Объяснение:
Медиана, проведенная к основанию равнобедренного треугольника равна высоте.
Из формулы вычисления площади треугольника находим длину основания:
S=a*h/2
a=2S/h=2*432/18=48 см;
выразим площадь через стороны треугольника по формуле Герона.
S=√(р(р-а)*(р-в)*(р-с)), где р - полупериметр, а, в, с - стороны треугольника.
Боковые стороны в равнобедренном треугольнике равны;
обозначим длину боковой стороны - в,
тогда периметр будет равен Р=(2в+48),
полупериметр р=(2в+48)/2=(в+24),
площадь будет равна: S=√(р*(р-в)*(р-в)*(р-48))=24√(в²-24²)=432;
в=30 см - боковая сторона.
Объяснение:
2) ∠MNP + ∠N = 180° - как смежные
∠N = 180° - ∠MNP = 180° - 135° = 45°
ΔMNK - равнобедренный, значит ∠M = ∠N = 45°
ответ: 45°
3) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠А = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ ВС = 12 / 2 = 6 см
АС² + ВС² = АВ² (по теореме Пифагора) ⇒ АС² = АВ² - ВС²
АС² = 12² - 6² = 144 - 36 = 108
АС = √108 ≈ 10 см
ответ: 10 см
4) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠В = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ АВ = 7.5 * 2 = 15 см
ответ: 15 см
5)∠А = ∠МАN - как вертикальные ⇒ ∠А = 27°
Сумма углов треугольника равна 180°
ΔАВС = 180° = ∠А + ∠В + ∠С
∠А = 180° - 90° - 27° = 63°
ответ: 63°
Відповідь: розв'язання на фото, Слава Україні
Пояснення: