Биссектриса острого угла а параллелограмма abcd пересекает сторону вс в точке м, которая делит вс на два отрезка 8 см и 12 см. прямая ам пересекает продолжение стороны cd в точке f. найдите длину отрезка df.
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
Углы прямоугольника равны 90º.⇒ Углы вписанного прямоугольника - вписанные и опираются на половину окружности, т.е. опираются на диаметр. Диагональ вписанного прямоугольника - диаметр описанной окружности. d=2R=10 Диагональ вписанного прямоугольника равна 10 (ед. длины) –––––––––– Как вариант - диагональ делит прямоугольник на два равных прямоугольных треугольника и является их общей гипотенузой. Центр описанной окружности прямоугольного треугольника - середина гипотенузы. Следовательно, половина диагонали равна радиусу, а вся диагональ - диаметру описанной окружности. d=10 (ед. длины)
<MAB= <AFC (накрест лежащие углы ; BA|| DF )
значит <DAF= <AFC , т.е. ΔDAF равнобедренный :
DF =DA= BC =8 см +12 см =20 см.