Рисунки элементарные,можно с ними не морочиться.
Касательная к окружн-ти,перпендикулярна к ее радиусу, проведенному в точку касания. ОВ и ОС - радиусы, проведенные в точки касания В и С, значит, треуг-ки АВО и АСО - прямоуг-ные. Кроме того. ОС=ОВ - как радиусы одной окр-ти, а АО - их общая сторона (она же гипотенуза), т.е., треуг-ки АВО и АСО равны по катету и гипотенузе, значит, и углы у них соответственно равны, значит угол АОВ = углу АОС=130/2=65 град.
Итак угол АВО -прямой, т.е.=90 град., угол АОС=65 град., а
угол ВАО= 180 - (90+65)=180-155=25 град.
по теореме косинусов можно сразу найти косинус угла СВD в треугольнике CBD:
Cos(CBD)=(BC²+BD²-CD²)/(2*BC*BD) или в нашем случае:
Cos(CBD)=(25+36-16)/60=3/4.
ответ: <CBD=arccos(3/4) или ≈41,4°.
Синус угла CBD равен sin(CBD)=√(1-9/16)=√7/4.
Диагональ делит параллелограмм на два равных треугольника, поэтому площадь параллелограмма равна Sabcd=2*Sbcd.
Scbd=(1/2)BC*BD*Sin(CBD) или Scbd=15√7/4.
Sabcd=2*15√7/4=15√7/2=7,5√7.
ответ: Sabcd=7,5√7.
Для проверки найдем по теореме косинусов в треугольнике АВD косинус угла А:
CosA=(16+25-36)/40=1/8.
SinA=√(1-1/64)=(√63)/8=(3√7)/8.
Тогда площадь параллелограмма равна
Sabcd=AB*AD*SinA или Sabcd=(20*3√7)/8=15√7/2=7,5√7.
ответ совпал с полученным ранее значением.