М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
380969330270
380969330270
23.09.2021 11:07 •  Геометрия

Расстояние от точки А до вершин квадрата равно 5 м. Найдите расстояние от точки А до плоскости квадрата, если сторона квадрата
равна 4 м

👇
Ответ:

ответ 3м.

Решение задачи прилагаю


Расстояние от точки А до вершин квадрата равно 5 м. Найдите расстояние от точки А до плоскости квадр
4,5(93 оценок)
Открыть все ответы
Ответ:
новичок618
новичок618
23.09.2021

30; 36,6

Объяснение:

Дано: ∆ABC1 - прямоугольный треугольник:

AB – гипотенуза = 13

CB – катет = 12

∆ABC2 - равнобедренный треугольник:

AB = AC = 10 (по условию и определению треугольника)

AC – основание = 8

Найти: S ∆ABC1, ∆ABC2 (площадь)

Решение: Рассмотрим ∆ABC1:

Найдём AC, чтобы узнать площадь первого треугольника, по теореме Пифагора (c²=a²+b²)

AC = √AB² - CB²

AC = √169 - 144

AC = √25

AC = 5

S = 0,5 × AC × AB

S = 0,5 × 5 × 12

S = 30

Рассмотрим ∆ABC2:

S = b/4√4a²-b²

S = 8/4√4×10²-8²

S = 2√4×100-64

S = 2√400-64

S = 2√336 или 36,6

4,8(29 оценок)
Ответ:
Tyxco
Tyxco
23.09.2021

1)

Δ АСВ – прямоугольный.

По теореме Пифагора

АВ2=AC2+BC2=225+400=625

AB=25

Проводим высоту СН прямоугольного Δ АСВ

СH– проекция MH

CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ

Расстояние от вершины M до АВ и есть МН,

Из формула площади прямоугольного треугольника АСВ

S=1/2·АС·ВС

и

S=(1/2)·АВ·СН

СН=АС·ВС/АВ=20·15/25=12

Из прямоугольного треугольника МСН прямоугольный

МН=СН/сos 60 °=12/0,5=24

О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.

2)

Из прямоугольного треугольника МСН прямоугольный

МC2=MH2–CH2=242–122=432

MC=12√3

S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)

S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=

S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150

CK⊥АD

CK=AB·CH/AD=25·12/20=15

S Δ MAD= (1/2)AD·CK=(1/2)20·15=150

S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=

S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300

4,6(55 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ