30; 36,6
Объяснение:
Дано: ∆ABC1 - прямоугольный треугольник:
AB – гипотенуза = 13
CB – катет = 12
∆ABC2 - равнобедренный треугольник:
AB = AC = 10 (по условию и определению треугольника)
AC – основание = 8
Найти: S ∆ABC1, ∆ABC2 (площадь)
Решение: Рассмотрим ∆ABC1:
Найдём AC, чтобы узнать площадь первого треугольника, по теореме Пифагора (c²=a²+b²)
AC = √AB² - CB²
AC = √169 - 144
AC = √25
AC = 5
S = 0,5 × AC × AB
S = 0,5 × 5 × 12
S = 30
Рассмотрим ∆ABC2:
S = b/4√4a²-b²
S = 8/4√4×10²-8²
S = 2√4×100-64
S = 2√400-64
S = 2√336 или 36,6
1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
ответ 3м.
Решение задачи прилагаю