1) так как биссектриса DB на идет на основание равнобедренного треугольника то DB является так же высотой и медианой То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6 NC=6см, NP=NC+CP=6+4=10см допустим NM и DC пересекаются в точке O так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90° отсюда следует что ΔDON=ΔCON( NO общий и два угла) DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см основание будет x+4 периметр будет P=x+x+x+4=3x+4 по условии P=46 3x+4=46 3x=42 x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см боковые будут 0,8x периметр будет P=x+0,8x+0,8x по условии P=78 2,6x=78 x=30
Таблицы не вижу. Признаки равенства треугольников таковы:
1. Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны. 2. Если сторона и два прилежащих угла одного треугольника равны соответствующей стороне и прилегающим углам другого треугольника, то такие треугольники равны. 3. Если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны. Отсюда, кстати, вытекают следствия для равенства прямоугольных треугольников.
1. Если два катета одного прямоугольного треугольника равны катетам другого треугольника то они равны. 2. Если катет и острый угол одного треугольника равны катету и острому углу другого треугольника, то они равны. 3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого треугольника то они равны. 4. Если катет и гипотенуза одного треугольника равны катету и гипотенузе другого треугольника то они равны. 5. Если гипотенуза одного равнобедренного треугольника равна гипотенузе другого равнобедренного треугольника, то они равны. И т.д.
То есть EB=BF ∠ABE=∠ABF=90° в треугольниках ΔABE и ΔABF сторона AB общая а EB=BF ∠ABE=∠ABF это значит что они ровны ΔABE=ΔABF
следует что гипотенузы ровны AE=AF, из того следует что ΔAEF равнобедренный!
2) есть ∠AKH=∠BKH и KH является высотой, то KH для треугольника AKB является так же медианой и биссектрисей
Отсюда следует что AH=HB, значит CH для ACB так же медиана и биссектриса => наш треугольник ABC равнобедренный
3) так как по условии NC : CP = 3 : 2 и PC=4см то NC=CP*3/2=4*3/2=6
NC=6см, NP=NC+CP=6+4=10см
допустим NM и DC пересекаются в точке O
так как NM биссектриса то ∠DNM=∠CNM угол ∠NOD=∠NOC=90°
отсюда следует что ΔDON=ΔCON( NO общий и два угла)
DN=NC=6см
ответ 6см
4) Допустим боковые стороны равнобедренного треугольника x см
основание будет x+4
периметр будет P=x+x+x+4=3x+4 по условии P=46
3x+4=46
3x=42
x=14
ответ 14,14,18
5)Допустим основание равнобедренного треугольника x см
боковые будут 0,8x
периметр будет P=x+0,8x+0,8x по условии P=78
2,6x=78
x=30
ответ 30, 24, 24