№1:
. №2: 
.
№1.
Пусть
, тогда
- секущая.
Теорема: "При пересечении двух параллельных прямых секущей, сумма односторонних углов равна
.
, по условию.
и
- односторонние углы 
№2.
Обозначим данные прямые буквами 
Пусть
- секущая прямых
и 
Теорема: "При пересечении двух параллельных прямых секущей, накрест лежащие углы равны".
и
- накрест лежащие при пересечении
и
секущей
, однако
.

и
- не параллельны.
============================================================
Свойство: "Вертикальные углы равны".
Свойство: "Сумма смежных углов равна
".
Рассмотрим углы, образовавшиеся при пересечении прямых
и 
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.
===========================================================
Рассмотрим углы, образовавшиеся при пересечении прямых
и
.
, по свойству вертикальных углов.
, по свойству смежных углов.
, по свойству вертикальных углов.

В равнобедренной трапеции диагональ является биссектрисой острого угла . Основание трапеции относится к боковой стороне как 8:5 Периметр трапеции равен 69 см найти стороны трапеции.
Объяснение:
АВСД-трапеция, АВ=СД , АД:АВ=8:5 , Р=69 см.
Тк. ВС║АД , АС-секущая , то ∠САД=∠АСД как накрест лежащие .
Тогда ΔАВС-равнобедренный по признаку ⇒АВ=ВС= 5 частей.
Поэтому СД=5 частей. Т.к. АД:АВ=8:5 , то АД=
*АВ.
Пусть одна часть равна х см , тогда АВ=ВС=СД=5х , АД=
*5х=8х .
Р=АВ+ВС+СД+АД , 69=5х+5х+5х+8х , х= 3 см .
АВ=ВС=СД=15 см , АД= 8см
Объяснение:
Смотрите фотографию.