Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
ответ: в)
тр. BCD равнобедренный, значит углы при основании равны, (180-90)/2= 45
Значит <B=90+45=135
<BDA=90-45=45
Значит <BAD=90-45=45
Итого:
<A=45
<B=135
<C=90
<D=45
синусы и т.д., вычисляй.
Для б)
ABCD - параллелограмм, т.к. BC равна и параллельна AD.
Обрати внимание, что в прямоугольном тр.ке BOC, одна сторона (катет OC), в два раза меньше гипотенузы BC. Это значит, что этот катет лежит напротив угла 30. Т.е., <OBC=30
<ODA =<OBC (как внутренние накрест лежащие) =30
Значит, в прямоугольном тр.ке AOD, OD (лежит напротив угла 30) равна тоже 1 (в два раза меньше гипотенузы AD).
Теперь видно, что тр. ABO равен тр. OBC (по двум сторонам и углу между ними (90)).
Значит < B = 30*2=60
Итак:
<B=<D=60
<A=<C=(360-60-60):2=120
Объяснение:
(x,y)=(-2/7,0)
Объяснение:
вот так