Ничего не понял но очень интересно
Объяснение:
Ничего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересноНичего не понял но очень интересно
B1. S = (a²√43)/48 ≈ 0.137 a²; B2. AE = 2a;
Объяснение:
У тетраэдра АВСD все рёбра равны а, следовательно, все углы между рёбрами граней равны по 60°.
По условию АК = КD, поэтому АК = КD = а/2.
По условию CL : LD = 1 : 2, следовательно CL = a/3, a LD = 2a/3.
Смотри прикреплённый рисунок. Там сделаны дополнительные построения.
В1.
Из точки К проводим прямую KM, параллельную АВ и соединяем отрезком прямой точки М и L
Поскольку плоскость KLM параллельна АВ, то по определению параллельности прямой и плоскости (Если прямая, не лежащая в плоскости, параллельна прямой, лежащей в этой плоскости, то она параллельна данной плоскости) строим плоскость KLM следующим образом.
Проводим прямую КМ параллельно АВ и соединяем отрезком прямой точки М и L. По приведённому признаку параллельности прямая АВ параллельна плоскости KLM.
Поскольку КМ ║ АВ, то MD = BM = a/2
КМ - является средней линией ΔADB ⇒ КМ = а/2.
Рассмотрим Δ MDL. Найдём в нём сторону ML.
По теореме косинусов ML² = MD² + LD² - 2 · MD · LD · cos 60°
ML² = (a/2)² + (2a/3)² - 2 · a/2 · 2a/3 · 1/2
ML² = a²/4 + 4a²/9 - a²/3
ML² = 13a²/36
ML = (a√13)/6
ΔKDL = ΔMDL (KD = MD; DL - общая сторона; и ∠KDL = ∠MDL = 60°)
Следовательно, KL = ML = (a√13)/6
и ΔKML - равнобедренный KL = ML = (a√13)/6
Высота h в ΔKML является и медианой и делит пополам сторону КМ, которая равна а/2
Найдём h по теореме Пифагора
ML² = h² + (KM/2)²
13a²/36 = h² + (a/4)²
h² = 13a²/36 - a²/16 = 52a²/144 - 9a²/144 = 43a²/144
h = (а√43)/12
Площадь ΔKML равна
S = 1/2 · KM · h = 1/2 · a/2 · (а√43)/12
S = (a²√43)/48
В2.
В треугольнике АКЕ проведём прямую KF ║ СL.
Тогда ΔАКF - равнобедренный (так как ∠КFA = ∠KAF = 60°), и KF = AF = a/2; и FC = AC - AF = a - a/2 = a/2
ΔKFE и ΔLCE подобны, так как KF ║ LC.
Из их подобия следует, что
КF : LC = EF : EC
a/2 : a/3 = (FC + EC) : EC
3/2 = (a/2 + EC) : EC
3 EC/2 = a/2 + EC
EC/2 = a/2
EC = a
AE = AC + EC = a + a = 2a