1)Площадь треугольника равна половине произведения основания на высоту, высота равна 12/3=4 площадь=1/2*12*4=24 см² 2)По теореме Пифагора 13²=12²+а² а²=25 а=5 см 3) (ртс1) Площадь ромба равна половине произведения диагоналей 1/2*10*12=60 см² сторону ромба найдем из прямоугольного треуг с катетами 5 и 6 гипотенуза=стороне ромба=√6²+5²=√61 4) (рис 2)угол АВН=30 град, значит АН=4 (катет лежащий против угла в 30 градусов равен половине гипотенузе) АД=2ВН=8 ВС=ДН=4 высота трапеции равна ВН=корень(8^2-4^2)=корень из 48=4корня из 3 площадь равна (8+4)/2*4корня из 3=24 корня из 3
РА=РВ=РС=6 см
1. Рассмотрим Δ АОР - прямоугольный.
АО²+РО²=РА² - (по теореме Пифагора)
АО = √(РА²-РО²) = √(6² - (√13)²) = √(36-13) = √23 (см)
2. АО является радиусом описанной окружности.
R=(a√3) / 3
a= (3R) / √3 = (3√23)/√3 = √69 (см) - это длина стороны основы.
3. Находим периметр основы.
Р=3а
Р=3√69 см
4. Проводим РМ - апофему и находим ее.
Рассмотрим Δ АМР - прямоугольный.
АМ=0,5АВ=0,5√69 см
АМ²+РМ²=РА² - (по теореме Пифагора)
РМ = √(РА²-АМ²) = √(6² - (0,5√69)²) = √(36-17,25) = √18,75 = 2,5√3 (см)
5. Находим площадь боковой поверхности пирамиды.
Р = 1/2 Р₀l
Р = 1/2 · 3√69 · 2,5√3 = 3,75√207 = 3,75·3√23 = 11,25√23 (см²)
ответ. 11,25 √23 см².