Объяснение:
Рассмотрим треугольники ABF и CBD.
AB =BC, угол A =углу С по условию, угол В - общий. Треугольники равны по стороне и двум прилегающим к ней углам (второй признак равенства треугольников)
Из равенства треугольников следует равенство углов: <AFB=<CDB, и сторон: BF=BD.
По свойству смежных углов имеем:
<CFO=180°-<AFB
<ADO=180°-<CDB=180°-<AFB, следовательно <CFO=<ADO.
AD=AB-BD
CF=BC-BF, т.к. AB=BC, а BD=BF, то AD=CF.
Рассмотрим треугольники ADO и CFO.
<А=<С - по условию; AD=CF, <CFO=<ADO -из доказанного выше, следовательно △ ADO= △ CFO по стороне и двум прилегающим к ней углам (второй признак равенства треугольников).
Из равенства треугольников следует равенство сторон: AO=CO.
Что и требовалось доказать.
Обозначим центр данной окружности точкой O.
AB ∩ CD = O, как диаметры данной окружности
Рассмотрим ΔCOA и ΔDOB:
AO = OB, как радиусы одной окружности
OC = OD, как радиусы одной окружности
∠COA = ∠BOD, как вертикальные
⇒ ΔCOA = ΔDOB, по I признаку равенства треугольников (по двум сторонам и углу между ними)
В равных треугольниках соответствующие стороны и углы равны.⇒ ∠OCA = ∠ODB, как накрест лежащие при пересечении AC и BD секущей CD
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.⇒ AC || BD
ч.т.д.
Построим ромб KLMI
KL || VA || IM, KL=VA=IM
Тогда ∠AVI=∠LKI, ∠AVK=∠MIK
Диагонали ромба являются биссектрисами углов, перпендикулярны, точкой пересечения делятся пополам.
KX, IX - биссектрисы углов ромба => KM, IL - диагонали ромба
Треугольники KXO и MXA равны (по стороне и прилежащим углам), KO=MA
VIMA - параллелограмм, VI=MA
Следовательно KO=VI
Если точка O лежит между K и V, решение не меняется.