Возьмем равнобедренный треугольник ABC и построим высоты AH, BF, CD
Рассмотрим полученные треугольники ABF и ACD. Сторонf AB=AC по условию задачи, так же как и углы BAF=CAD. Так как высота в равнобедренном треугольнике является и биссектрисой то углы ABF=ACD= 600/2=300
Первый признак равенства треугольников: Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Значит треугольники ABF и ACD равны значит и сторона AH = CD (являющиеся высотами треугольника ABC)
также доказывается равенство высоты BF
(как то так)
ответ:
объяснение:
построй произвольный четырёхугольник cdef, проведи прямую ce. на прямой ce отметь три точки: одна внутри четырехугольника, две вне его, слева ниже и справа выше. обзови точки g1, g2,g3. через эти три точки проведи три прямые, параллельные cd. проведи прямые cf,ed. у тебя получилось шесть точек пересечения прямых с плоскостью а: когда эта плоскость выше, ниже четырёхугольника и когда она пересекает его. а линии пересечения плоскостей (опять же для трёх случаев) ты уже провела: параллельные прямые через g1, g2, g3.
2)Если это паралеллограмм, то BC=AD, AB=CD. Значит BC=AD=18 см тоже.
3)Находим стороны ВС и CD, (66-36)/2=15 см
ответ:AB=15,BC=18,CD=15,AD=18