Проекции катетов на гипотенузу прямоугольного треугольника - это отрезки гипотенузы, на которые ее делит высота, т.к. высота - перпендикуляр к прямой ( гипотенузе), а катеты – наклонные из вершины прямого угла.
Катет - среднее пропорциональное между гипотенузой и его проекцией на неё .
В треугольнике на рисунке приложения
Катет Вс=30 см, а ВН=18 - его проекция на гипотенузу.
BC²=АВ•НВ
900=АВ•18
АВ=900:18=50 см
Высота, проведенная к гипотенузе, делит прямоугольный треугольник на подобные. Из подобия следует отношение:
АН:АС=АС:АВ
АН=50-18=32
32:АС=АС:50 ⇒ АС²=32•50
АС=√1600=40 см
Если обратить внимание на отношение катета и гипотенузы 3:5 в ∆ ВСН, увидим, что этот треугольник - египетский. Отсюда следует АВ=50 см, (т.к. меньший катет=30). а АС=40 см. Получим длины сторон треугольника, отношение которых 3:4:5.
Объяснение:
Обозначим углы ромба буквами A;B;C;D
Есть такое правило, что диагонали ромба точкой пересечения делятся попалам а все стороны равны, следовательно рассмотрим треугольник
ABO:
AB=30см
BO=15 см т. к половина диагонали.
И получается прямоугольный треугольник ABO
По теореме пифагора ищим сторону AO
30^2=15^2+x
Считаем и получаем x
Х у нас будет 1/2 от второй диагонали а значит вторая диагональ равна в 2 раза больше.
Ну а площадь ромба равна 1/2 произведения диагоналей а тоесть 30*2x*1/2
удачи)