Соединим середины ребер, лежащих в одной грани; получим, что каждый из отрезков будет средней линией соответствующего треугольника.
поэтому
поэтому
Значит, 4-угольник MNPQ - параллелограмм по определению, его диагонали QN и МР пересекаются в т. О и делятся в ней пополам. Отрезки QN и MP соединяют середины противоположных ребер тетраэдра.
Повторяя проведенные выше рассуждения, заключаем, что RS и QN тоже пересекаются в точке О и делятся ей пополам.
Таким образом, все три отрезка: RS, QN, MP - пересекаются в т. О и делятся в ней пополам.
центр описанной окружности - это точка пересечения серединных перпендикуляров.
Пусть О центр описанной окружности, ОК серединный перпендикуляр, тогда АК=КВ=12. ОК расстояние от центра окружности до стороны АВ, ОК=5
Треуг. АКО прямоугольный и по т. Пифагорв найдем АО(радиус описанной окружности), АО^2=144+25=169, AO=13
Смотри чертеж.