Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб АВСD, сторона которого равна а и угол равен 60°. Плоскость АD1C1 составляет с плоскостью основания угол 60°.
(Здесь нужно заметить, что не диагональ боковой грани ВС1 составляет угол 60°, а перпендикуляр С1Н к АВ)
Найдите:
а) высоту ромба;
Данный ромб состоит из двух равносторонних треугольников с общей стороной СА.
Высота СН равностороннего треугольника АВС равна высоте ромба:
h=а*sin(60°)=а(√3):2
б) высоту параллелепипеда;
Параллелепипед прямой. Высотой является С1С, - она перпендикулярна плоскости ромба по условию - и с СН является катетом прямоугольного треугольника СС1Н с прямым углом при С.
С1С:СН=tg(60°)
C1C=tg(60°)*CH=√3*а(√3):2=3a/2=1,5a
в) площадь боковой поверхности параллелепипеда:
Sбок=Р(ABCD)*H=4a*1,5a=6a²
г)площадь поверхности параллелепипеда:
Она состоит из суммы площадей 2-х оснований и боковой поверхности:
Теория - основа для решения задач. Раз изучаете вписанные и описанные окружности, наверняка уже знаете, что центр вписанной в треугольник окружности находится в точке пересечения его биссектрис. Знаете также и то, что центр описанной окружности - в точке пересечения срединных перпендикуляров, проведенных к каждой из его сторон. В равностороннем треугольнике все биссектрисы и высоты пересекаются в одной точке, и эта точка - центр и вписанной, и описанной окружности, так как высота равностороннего треугольника и есть срединный перпендикуляр к стороне. Почему - доказывать не стоит, наверняка знаете. О том, что медианы треугольника пересекаются в одной точке и точкой пересечения делятся в отношении 2:1- считая от вершины, Вы уже должны знать. Вот на знании всех этих свойств и построено решение задачи. Точка пересечения биссектрис треугольника равноудалена от всех его сторон. Расстояние от нее до стороны - радиус вписанной окружности. В равностороннем треугольнике это 1/3 медианы - и это и 1/3 биссектрисы и 1/3 высоты ( три в одном флаконе). Радиус описанной вокруг равностороннего треугольника окружности - расстояние от точки пересечения высот до вершин треугольника, и это расстояние в два раза больше расстояния от точки пересечения биссектрис (высот) до стороны треугольника. Итак, радиус описанной вокруг равностороннего треугольника окружности в два раза больше радиуса вписанной в него. R=2r= 5*2=10 cм См. рисунок в качестве иллюстрации.
Трапеция АВСД, АД-диаметр, АО=ОД=радиус, АД=2ВС, АВ=2, трапеция равнобокая - только в равнобокую трапецию можно вписать окружность, АВ=СД, уголА=уголД, проводим высоты ВН и СК на АД, треугольники АВН и КСД равны как прямоугольные по гипотенузе и острому углу, АН=КД, НВСК-прямоугольник ВС=НК=2х, АН=КС=(АД-НК)/2=(2ВС-ВС)/2=0,5ВС=х, НО=ОК=НК/2=2х/2=х, ОД=радиус=ОК+КД=х+х=2х=ОС, треугольник ОСК прямоугольный катет ОК=1/2 гипотенузы ОС, уголОСК=30, уголСОК=90-30=60, СК=ОС*sin60=2х*корень3/2=х/корень3, СД в квадрате=СК в квадрате+КД в квадрате=3*х в квадрате + х в квадрате=4х в квадрате, СД=2х=2 см, х=1, радиус=2*1=2
Основанием прямого параллелепипеда ABCDA1B1C1D1 является ромб АВСD, сторона которого равна а и угол равен 60°. Плоскость АD1C1 составляет с плоскостью основания угол 60°.
(Здесь нужно заметить, что не диагональ боковой грани ВС1 составляет угол 60°, а перпендикуляр С1Н к АВ)
Найдите:
а) высоту ромба;
Данный ромб состоит из двух равносторонних треугольников с общей стороной СА.
Высота СН равностороннего треугольника АВС равна высоте ромба:
h=а*sin(60°)=а(√3):2
б) высоту параллелепипеда;
Параллелепипед прямой. Высотой является С1С, - она перпендикулярна плоскости ромба по условию - и с СН является катетом прямоугольного треугольника СС1Н с прямым углом при С.
С1С:СН=tg(60°)
C1C=tg(60°)*CH=√3*а(√3):2=3a/2=1,5a
в) площадь боковой поверхности параллелепипеда:
Sбок=Р(ABCD)*H=4a*1,5a=6a²
г)площадь поверхности параллелепипеда:
Она состоит из суммы площадей 2-х оснований и боковой поверхности:
2S◊(ABCD)=2*a²*sin(60°)=2*0,5*a²√3=a²√3
S полн=6a²+a²√3=а²(6+√3)