М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
danil2009cot
danil2009cot
12.04.2020 13:33 •  Геометрия

Дан треугольник ABC. Если AB = 10 см, ∠A = 60° и ∠B = 75°, то найди площадь треугольника ABC. Вычисли ответ с микрокалькулятора, округли до целого числа

👇
Ответ:
helppliizzzz
helppliizzzz
12.04.2020

59 см 2 держи пожертвовал риди тебя)

Объяснение:

4,5(43 оценок)
Открыть все ответы
Ответ:
VashaMamasha11
VashaMamasha11
12.04.2020
AB =BC ; ∠A= ∠C =α =45° , OH =d =3 см ; ∠SAO=∠SBO=∠SCO=β=30°.
---
V - ?

V =(1/3)Sосн *H =(1/3)S(ABC)*SO.

Если все боковые ребра (SA,SB ,SC) пирамиды образуют с плоскостью основания ABC равные углы  (в данном случае  β), то высота проходит через центр окружности  описанной около основания. 
HO - серединный перпендикуляр стороны AB: OH⊥AB,AH =BH =AB/2; ||OH =d ||.

∠B =180°-2α ; R =d/sin(∠B/2) = d/sin(90°-α)=d/cosα.
SO= R*tqβ =(d/cosα)*tqβ = (tqβ /cosα)* d .
AB =2*OH*tqα=2d*tqα. S(ABC) =(1/2)*AB²*sin∠B = (1/2)*4d²*tq²α*sin(180°-2α)= 
 2d²*tq²α*sin2α= 2d²*tq²α*2sinα*cosα= 4d²*sin³α/cosα.

V  =(1/3)S(ABC)*SO.
V=(1/3)*4d²*sin³α/cosα*(tqβ /cosα)*d =(4/3)*sinα*tq²α**tqβ*d³.

Eсли α =45°, β=30°,d=3 см ,то :
V=(4/3)*(√2/2)*(1²)*(1/√3)*3³=6√6. 
4,6(22 оценок)
Ответ:
zangalievaira
zangalievaira
12.04.2020
Задача решается двумя Графически и алгебраически.
приложение №1):
Через точку С проводим диаметр окружности. Обозначаем его СМ. Проводим отрезок АМ. В треугольнике АМС угол А прямой (МС диаметр вписанного прямоугольного треугольника). АВДМ - трапеция (АМ||ВД), углы АВМ и АДМ равны (опираются на одну хорду АМ). Трапеция АВДМ - равнобедренная, АВ=МД=3 см.
Треугольник МСД прямоугольный. МД=3 см, ДС=4 см, МС=√(3³+4³)=5 см.
 Радиус 5/2=2,5 см.

приложение №2):
Радиус описанной окружности вокруг четырехугольника, равен радиусу описанной окружности любого треугольника, образованного сторонами этого четырехугольника.
Радиус описанной окружности -
R=a/2sinα , где а - сторона треугольника, α - противолежащий угол.
Рассматриваем треугольник НВС, где Н точка пресечения диагоналей.
Прямоугольный, угол Н (по условию), угол В - β, угол С - (90-β).
R=СД/2sinβ=2/sinβ;
R=АВ/2sin(90-β)=3/2cosβ.
Делим одно выражение на другое.
3/2cosβ * sinβ/2=3tgβ/4=1, tgβ=4/3
R=2/sin(atgβ)=2.499999=2.5 см.
4,6(34 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ