Даны вершины треугольника А(-2,0,1), В(8,-4,9), С(-1,2,3).
1) Находим длины сторон по разности координат точек.
АВ = √((8-(-2))² + ((-4-0)² + (9-1)²) = √(100 + 16 + 64) = √180 = 6√5.
BC = √((-1-8)² + ((2-(-4))² + (3-9)²) = √(81 + 36 + 36) = √153.
АC = √((-1-(-2))² + ((2-0)² + (3-1)²) = √(1 + 4 + 4) = √9 = 3.
Далее по теореме косинусов определяем углы треугольника.
a(ВС) b(АС) c(АВ) p 2p S
12,36931688 3 13,41640786 14,39286237 28,78572474 18
153 9 180
2,023545494 11,39286237 0,976454506 22,51115808 324 18
cos A = 0,447213595 cos B = 0,97618706 cos С = -0,242535625
Аrad = 1,107148718 Brad = 0,218668946 Сrad = 1,81577499
Аgr = 63,43494882 Bgr = 12,52880771 Сgr = 104,0362435.
Как видим - треугольник тупоугольный.
2) Находим координаты точки М как середины стороны АС.
М = (А(-2,0,1) + С(-1,2,3))/2 = (-1,5; 1; 2).
Длина ВМ = √((-1,5-8)² + ((1-(-4))² + (2-9)²) = √(90,25 + 25 + 49) = √164,25 ≈ 12,81600562.
1. АА₁ - биссектриса,
ВВ₁ - медиана,
СС₁ - высота.
2. АВ = СВ,
∠АВЕ = ∠СВЕ,
ВЕ - общая сторона.
ΔАВЕ = ΔСВЕ по 1 признаку (по двум сторонам и углу между ними).
3. ∠ВАС = 180° - ∠1 по свойству смежных углов.
∠ВАС = 180° - 110° = 70°.
В равнобедренном треугольнике углы при основании равны, значит
∠ВСА = ВАС = 70°
∠BDC = 90°, так как в равнобедренном треугольнике медиана, проведенная к основанию, является высотой.
4. ОМ = ОК по условию,
∠DMO = ∠BKO по условию,
∠DOM = ∠BOK как вертикальные, значит
ΔDMO = ΔBKO по стороне и двум прилежащим к ней углам.
В равных треугольниках напротив равных сторон лежат равные углы, значит ∠MDO = ∠KBO, а так же OD = OB.
Треугольник DOB равнобедренный, значит углы при основании равны:
∠ODB = ∠OBD.
∠MDB = ∠MDO + ∠ODB
∠KBD = ∠KBO + ∠OBD, а так как ∠MDO = ∠KBO и ∠ODB = ∠OBD, то
∠MDB = ∠KBD, т.е. ∠D = ∠B