Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Осноположником геометрии можно считать Евклида. В начале XX века великий французский архитектор Ле Корбюзье сказал: «Я думаю, что никогда до настоящего времени мы не жили в такой геометрический период. Все вокруг – геометрия». В развитии Геометрия можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Геометрии.
Первый — период зарождения Геометрии как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Геометрия, дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Геометрия, по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.Геоме́трия (от др. ... γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения. Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида.
Дано:
ABCDA₁B₁C₁D₁ - куб
AB = 2
--------------------------------
Найти:
а) р(B, A₁C₁) - ?
б) р(A, BD₁) - ?
а) Проведем BH⊥A₁C₁. Искомое расстояние BH = d есть высота BH - ΔBA₁C₁. ΔA₁BC₁ равносторонний — все его стороны, будучи диагоналями граней, равны ⇒ A₁B = BC₁ = √2, cледовательно:
sin∠BA₁H → BH/BA₁ → BH = BA₁ × sin60° = √2 × √3/2 = √6/2 ⇒ BH = р(B, A₁C₁) = √6/2
(Рисунок показан внизу где влево).
б) Проведем BH⊥BD₁ Искомое расстояние AH = d есть высота AH - ΔABD₁. ΔABD₁ - прямоугольный. Действительно, прямая AB⊥(ADD₁) и поэтому перпендикулярна любой прямой, лежащей в этой плоскости — в частности, прямой AD₁.
Имеем: AB = 2, AD₁ = √2, BD₁ = √3
Если S — площадь треугольника ABD₁, то получаем:
2S = AB×AD₁ = BD₁×AH ⇒ AH = AB×AD₁/BD₁ = 2×√2/√3 = 2√2/√3 × √3/√3 = 2√2×3/(√3)² = 2√6/3 ⇒ р(A, BD₁) = AH = 2√6/3
(Рисунок показан внизу где вправо).
ответ: а) р(B, A₁C₁) = √6/2, б) р(A, BD₁) = 2√6/3