Центр окружности лежит на пересечени высот, которые относятся 2/1 считая от вершины, мы обозначим их как х и 2х, то что 2х это радиус. В раврностороннем треугольнике высота, это медиана и бессиктриса, так что она делит основание на два, соответстаенно пол основания это 6. Теперь по теореме пифагора высота= корень из12 в квадрате- 6 в квадрате, корень из 144- 36, равно корень из 108, но это вся высота а нам надо две части, поэтому:3х=корень из 108, х=корень из 108/3, 2х= 2 корня из 108\3, теперь диаметр в 2 р больше радиуса так что он =4 корня из 108\3.
Осталось найти боковую площадь.Она состоит из 2 равных равнобедренных треугольника с основанием b и еще одного равнобедренного с основанием ВС. Основанием высоты пирамиды будет точка О, которая является центром вписанной окружности в ΔАВС,надо вычислить этот радиус-чтобы потом через него вычислить высоты боковых граней. r=(BC/2)√((2b-BC)/(2b+BC))=b*cosβ*√((1-cosβ)/(1+cosβ))(вычисления я опустила) Тогда высота боковых граней будет KM=r/cosФ=b*cosβ*√((1-cosβ)/(1+cosβ))/cosФ S(бок)=(b+b+BC)*KM/2=(2b+2b*cosβ)*b*cosβ*√((1-cosβ)/(1+cosβ))/2cosФ= =(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ S(пол)=S(осн)+S(бок)=b^2*sin2β/2+(1+cosβ)*b^2*cosβ*√((1-cosβ)/(1+cosβ))/cosФ
Центр окружности лежит на пересечени высот, которые относятся 2/1 считая от вершины, мы обозначим их как х и 2х, то что 2х это радиус. В раврностороннем треугольнике высота, это медиана и бессиктриса, так что она делит основание на два, соответстаенно пол основания это 6. Теперь по теореме пифагора высота= корень из12 в квадрате- 6 в квадрате, корень из 144- 36, равно корень из 108, но это вся высота а нам надо две части, поэтому:3х=корень из 108, х=корень из 108/3, 2х= 2 корня из 108\3, теперь диаметр в 2 р больше радиуса так что он =4 корня из 108\3.