1)В прямоугольном треугольнике сумма острых углов равна 90 градусам
2) В прямоугольном треугольнике катет лежащий против угла в 30°, равен половине гипотенузы.
3)В прямоугольном треугольнике если катет равен половине гипотенузы, то угол, лежащий против этого катета, равен 30°
4) Один из острых углов прямоугольного треугольника в 2 раза больше другого. Найдите острые углы этого треугольника
Пусть один угол -х, тогда другой - 2х, а т.к. Δ прямоугольный, то третий угол =90°. Сумма углов треугольника =180°
90+х+2х=180
3х=180-90
3х=90
х=30° один угол
30*2=60° второй угол
5) Один из углов прямоугольного треугольника на 18° больше другого . Найти величины всех углов треугольника
180-сумма
x-один угол
x+18-другой
90+18+х+х=180
2х+108=180
2х=72
х=36
Значит, 90°-один угол,36°-второй,54°-третий
6)Существует ли треугольник с двумя прямыми углами? - Нет, сумма углов треугольника всегда 180 градусов.
7) В прямоугольном треугольнике сумма острых углов равна 90°
8) Сторона прямоугольного треугольника, лежащая против большего угла называется гипотенузой.
9.Если катеты одного прямоугольного треугольника соответственно равны катетом другого, то такие прямоугольные треугольники равны.
10) В прямоугольном треугольнике один из острых углов равен 30°,а противолежащий ему катет равен 6см. Сторона, лежащая против угла 30° в 2 раза меньше гипотенузы, то есть она равна 12 см.
11) Углы равнобедренного прямоугольного треугольника равны 60°,60°,60°.
12) Сторона прямоугольного треугольника , лежащая против острого угла называется катет.
13) В треугольнике АВС угол С равен 90○,угол В равен 60○,СВ =6 см. Сторона АВ равна 12 см
т.к угол С= 90 градусов,угол В= 60 градусов,=> угол А=90-60=30 градусов,а тк против угла А=30 градусов лежит сторона СВ=6 см,а против угла в 30 градусов лежит стороны = 1/2 гипотенузы,тогда АВ= 6 *2=12 см сторона АВ
14) В треугольнике АВС угол С равен 90° , АВ= 15см ,СВ=7,5см . Угол В равен 60°
Катет СВ равен половине гипотенузы, значит он лежит против угла30°,
т.е угол А равен 30°Следовательно угол B равен 60°
15) Перечислите все признаки равенства прямоугольных треугольников (коротко):
1) по двум катетам;
2) по катету и гипотенузе
3) по гипотенузе и острому углу
4) по катету и острому углу
Найти стороны треугольника, если АМ= 9, СК= 12.
Решение:
Медианы треугольника точкой пересечения О делятся в отношении 2:1, считая от вершины.
Дано: АМ=9, СК=12. Значит АО=9*(2/3)=6, ОМ=3, СО=12*(2/3)=8, ОК=4.
В прямоугольном треугольнике АОС (угол АОС=90° - дано) гипотенуза АС по Пифагору равна АС=√(АО²+ОС²) или АС=√(6²+8²)=10.
В прямоугольном треугольнике АОК (угол АОК=90° - дано) гипотенуза АК по Пифагору равна АК=√(АО²+ОК²) или АК=√(6²+4²)=2√13. АВ=2*АК, так как СК - медиана. АВ=4√13.
В прямоугольном треугольнике СОМ (угол СОМ=90° - дано) гипотенуза СМ по Пифагору равна СМ=√(ОМ²+ОС²) или СМ=√(3²+8²)=√73. ВС=2*СМ, так как АМ - медиана. ВС=2√73.
ответ: стороны треугольника равны АС=10; АВ=4√13≈14,4; ВС=2√73≈17.
Проверка:
Три медианы делят треугольник на 6 равновеликих треугольника.
Площадь одного из них равна Saok=(1/2)*6*4=12. значит Sabc=6*12=72.
В то же время по Герону Sabc=√[p(p-a)(p-b)(p-c)], где р - полупериметр треугольника, а,b,c - его стороны. Полупериметр равен:
р=(2√73+4√13+10)/2=(√73+2√13+5).
Подставим найденные значения в формулу:
Sabc=√[(√73+(2√13+5))*(2√13+5-√73)*(√73+(5-2√13))*(√73-(5-2√13))]=
√[((2√13+5)²-73)*(73-(5-2√13)²)]=√[(52+25+20√13-73)*(73-25+20√13-52)]=
√[(20√13+4)*(20√13-4)]=√(5200-16)=72.
Итак, стороны треугольника найдены правильно.