Если это окружности одного радиуса, то они расположены по разные стороны относительно прямой. Линия, соединяющая центры окружностей, перпендикулярна прямой. Центры окружностей находятся на расстоянии радиуса от прямой.
Окружность, центр которой принадлежит стороне AB треугольника ABC, проходит через точку B, касается стороны AC в точке C и пересекает сторону AB в точке D. Найдите больший угол треугольника ABC (в градусах), если AD:DB=1:2 ----------- Центр окружности лежит на АВ, следовательно, АD- диаметр. Проведем радиус ОС . Т.к. С - точка касания, ОС ⊥ АС. Треугольник АОС - прямоугольный. ОС=ОВ=ОD=r, АD:DB=1:2 ⇒ AD=DO=OB=r В прямоугольном треугольнике АСD гипотенуза AO=2 r=2 OC ⇒ sin∠OАС= OС:АО=1/2 ⇒ Угол ОАС=30º,⇒ угол АОС=60º, а смежный с ним угол ВОС=180º-60º-120º Острые углы равнобедренного треугольника ВОС равны (180º-120º):2=30º⇒ Больший угол АСВ треугольника АВС равен ∠АСВ=∠АСО+∠ВСО=90º+30º=120º
Если это окружности одного радиуса, то они расположены по разные стороны относительно прямой. Линия, соединяющая центры окружностей, перпендикулярна прямой. Центры окружностей находятся на расстоянии радиуса от прямой.