Ну что ж.. . Одну вершину C мы найдем сразу - это точка пересечения наших прямых x+y-4=0 2x+y-1=0 x=-3 y=7 Вторая и третья вершина будут иметь координаты A(a, 4-a) и B(b, 1-2b) Тогда середины сторон AB BC AC будут ((a+b)/2,(5-a-2b)/2) ((b-3)/2, (8-2b)/2) ((a-3)/2, (11-a)/2)
Далее медианы своей точкой пересечения делятся 2 к одному. А точка эта (0,0) То есть если вершина имеет координаты (х, у) , то основание медианы из этой вершины (-x/2,-y/2)
Тогда для С имеем: a+b=3 5-a-2b=-7
b=9 a=-6
То есть B(9,-17) A(-6,10)
Остается написать уравнение прямой AB - это уже просто: 9x+5y+4=0
1. Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
Верно не всегда. Если угол при вершине треугольника тупой, то центр описанной окружности лежит на продолжении высоты, проведенной из вершины, вне треугольника.
2. Если в треугольнике АВС углы А и В равны соответственно 40 и 70, то внешний угол при вершине С этого треугольника равен 70.
Неверно. Внешний угол треугольника равен сумме двух внутренних, не смежных с ним. Значит внешний угол при вершине С равен 40° + 70° = 110°.
3. Все хорды одной окружности равны между собой.
Не верно. Хорда - отрезок, соединяющий любые две точки окружности. На рисунке АВ ≠ CD.
условие подобия треуг-ов:
условие выполняется, значит треугольники ABC и A1B1C1 подобны