Прямоугольник ТКРС.
∠КАВ = 20°
∠ВСР = 30°
АМК = 20°
Найти:углы △АВС.
Решение:Прямоугольник - геометрическая фигура, у которой все углы прямые.
=> ∠КТС = ∠ТСР = ∠СРК = ∠РКТ = 90°
Сумма смежных углов равна 180°.
∠РКТ смежный с ∠ТКМ = 180° - 90° = 90°
=> △АМК - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.
=> ∠МАК = 90° - 20° = 70°
Сумма смежных углов равна 180°.
∠МАК смежный с ∠КАС => ∠КАС = 180° - 70° = 110°
Так как ∠КАВ = 20°,по условию => ∠ВАС = 110° - 20° = 90°
=> △ВАС - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°
=> КВА = 90° - 20° = 70°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠СВР = 90° - 30° = 60°
Сумма смежных углов равна 180°.
∠КВА смежный с ∠АВР => ∠АВР = 180° 70° = 110°
Так как ∠СВР = 60° => ∠АВС = 110° - 60° = 50°
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВСА = 90° - 50° = 40°
ответ: 90°, 50°, 40°.
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см