М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Gonsh1240
Gonsh1240
15.05.2020 19:12 •  Геометрия

Запишите название углов, образованных при пересечении двух прямых секущей по рисунку данному в плане урока​


Запишите название углов, образованных при пересечении двух прямых секущей по рисунку данному в плане

👇
Ответ:
palos3323
palos3323
15.05.2020

ответ:b и f накрест лежащие, c и m односторонние, k и c соответственные,  b и f вертикальные, k и n смежные, с и q накрест лежащие, b и m соответственные, f и q односторонние.

Объяснение:

4,6(94 оценок)
Открыть все ответы
Ответ:
hvbdnnd
hvbdnnd
15.05.2020

Дан равнобедренный ΔABC, AB — основание. ∠A = ∠B.

1-й случай: биссектриса угла при основании (AD), высота из вершины на основание тр-ка (CH). ∠AEH = 75°.

Так как CH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ CH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

2-й случай: биссектриса угла при основании (AD), высота из противоположного угла при основании тр-ка (BH). ∠AEH = 75°.

Так как BH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ BH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

3-й случай: биссектриса угла при вершине (CD), высота из угла при основании тр-ка (AH). ∠CEH = 75°.

CD — биссектриса, и высота и медиана, т.к. опущена из вершины на основание равнобедренного тр-ка.

Так как AH — высота, тогда ΔCEH — прямоугольный, ∠CHE = 90° (EH ∈ AH)

∠ECH = 90°−∠CEH = 90°−75° = 15°

∠A = ∠B = 90°−∠ECH = 90°−15° = 75° (т.к. ΔCBD — прямоугольный, ∠CDB = 90°).

ответ: угол при основании данного треугольника может быть равен 15° или 75°.


В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
4,4(91 оценок)
Ответ:
Нака0987
Нака0987
15.05.2020

Дан равнобедренный ΔABC, AB — основание. ∠A = ∠B.

1-й случай: биссектриса угла при основании (AD), высота из вершины на основание тр-ка (CH). ∠AEH = 75°.

Так как CH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ CH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

2-й случай: биссектриса угла при основании (AD), высота из противоположного угла при основании тр-ка (BH). ∠AEH = 75°.

Так как BH — высота, тогда ΔAEH — прямоугольный, ∠AHE = 90° (EH ∈ BH)

∠EAH = 90°−∠AEH = 90°−75° = 15°

∠A = ∠EAH×2 = 15°×2 = 30°

3-й случай: биссектриса угла при вершине (CD), высота из угла при основании тр-ка (AH). ∠CEH = 75°.

CD — биссектриса, и высота и медиана, т.к. опущена из вершины на основание равнобедренного тр-ка.

Так как AH — высота, тогда ΔCEH — прямоугольный, ∠CHE = 90° (EH ∈ AH)

∠ECH = 90°−∠CEH = 90°−75° = 15°

∠A = ∠B = 90°−∠ECH = 90°−15° = 75° (т.к. ΔCBD — прямоугольный, ∠CDB = 90°).

ответ: угол при основании данного треугольника может быть равен 15° или 75°.


В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
В равнобедренном треугольнике острый угол между одной из биссектрис и одной из высот, которые выходя
4,5(83 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ