Задайте вектор m , начало и конец которого лежат в вершинах тетраэдра АВСD и выполняется следующее условие вектор
АС=АВ-m-СD
Объяснение:
Векторам присущи свойства которые позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым :
АС=АВ-m-СD,
m=АВ-СD-АС,
m=АВ-АС-СD . По правилу вычитания векторов (оба вектора выходят из общей точки А , стрелка разности к уменьшаемому) АВ-АС =СВ;
m=СВ-СD , и снова правило вычитание векторов , тк они выходят из общей точки С ,
m=DВ.
В таких задачах даже чертеж не нужен.
1. 2 прямые делят плоскость на 4 части если они пересекаются ; или на 3 части, если прямые параллельны.
2. 3 прямые делят плоскость на 6 частей, если пересекаются в одной точке или две из них параллельны, а третья их пересекает ; если попарное пересечение и при этом никакие две не параллельны, то на 7 частей ; и на 4 части, при условии, что все эти прямые параллельны.
3. 4 прямые делят плоскость на 8 частей. если одна прямая пересекает три параллельных, если же две пары параллельных пересекаются в 4 точках, то плоскость делится на 9 частей, то же получим, если две параллельны, а две другие пересекаются в точке, принадлежащей одной из параллельных прямых; если все 4 прямые параллельны, то они делят плоскость на 5 частей, если две параллельные, а две другие пересекаются в точке, не принадлежащей ни одной из параллельных, то
они делят плоскость на 10 частей, если две пересекаются, две другие тоже пересекаются, и никакие не параллельны между собой, и точки пересечения двух пересекающихся пар не совпадают. то получим 11 частей плоскости.
Итак, 4 прямые делят плоскость на 5;8;9;10;11 частей.
ответ: 14 см.
Объяснение:
Дано. стороны треугольника ровны 2,5 см ; 7 см ; 4,5 см. вычИслите периметр треугольника
Решение.
Р=a+b+c=2.5 + 7 + 4.5 = 14 см.