Обозначим :
Н - высота пирамиды
h - высота основания пирамиды
r -радиус окружности, вписанной в основание
а - сторона основания
Решение
а) высота пирамиды Н = L· sinβ
б) проекция апофемы на плоскость основания -это радиус вписанной окружности r = L · cosβ.
в) сторона основания пирамиды а = 2r/tg 30° = 2L· cosβ/(1/√3) =
= 2√3 · L·cosβ
г) площадь основания пирамиды Sосн = 0.5h·a, где h = a·cos30°.
Тогда Sосн = 0.25a²·√3 = 0.25 · √3 · (2√3 · L·cosβ)² = 3√3L² · cos²β
д) Площадь боковой поверхности пирамиды
Sбок = 3 · 0,5 · L · a = 1.5L · 2√3 · L·cosβ = 3√3 · L² · cosβ
e) площадь полной поверхности пирамиды:
Sполн = Sосн + Sбок = 3√3 · L² · cos²β + 3√3 · L² · cosβ =
= 3√3 · L² · cosβ · (cosβ + 1)
Подробнее - на -
что я вам скажу - этими заданиями, в которых есть шаблоны для ответов, куда надо что-то как-то вставить, убивают возможность думать.
Решение простое.
У треугольника есть правило - против большей стороны лежит больший угол, и против меньшей стороны лежит меньший угол.
А теперь собственно решение.
АВ - это меньшая сторона из двух (третью мы вообще не берем в учет), значит против нее лежит меньший угол из двух. А если он тупой, то другой будет еще больше, значит, тоже тупой. Но у треугольника два тупых угла быть не может.
Значит, ответ такой - не может.