Диагональ ромба разбивает его на два равных треугольника, со сторонами равными сторонам ромба и третья сторона - диагональ ромба, все стороны равны. В равностороннем треугольнике углы = 60° - угол при вершине ромба и ему противолежащий. Сумма углов четырехугольника 360°. 360°- 60°- 60°= 240° - сумма противолежащих равных углов ромба 240°:2=120° - градусная мера противолежащих углов ромба второй пары ответ: 60°, 120°, 60°, 120°
Если диагональ ромба равна его стороне, то треугольник образованный этой диагональю и двумя сторонами ромба равносторонний, следовательно все углы в нем по 60 градусов, значит 2 противолежащих угла в этом ромбе по 60 градусов, а другие два по (360(сумма углов в четырехугольнике) - (60 + 60)):2 = 120 градусов. ответ: два угла по 60 градусов и два по 120 градусов.
В трапеции верхнее основание = 2см,
нижнее основание = 14 см.
Проведи две высоты с концов верхнего основания к нижнему.
По бокам трапеции получишь 2 равных прямоугольных треугольника
14 - 2 = 12 (см) - это 2 нижних катета обоих треугольников
12 : 2 = 6 (см) - это один нижний катет одного треугольника
Боковая сторона трапеции - это гипотенуза треугольника = 10 см
Нижний катет треугольника = 6см
Проведённая высота - это вертикальный катет треугольника
По теореме Пифагора определим высоту
Высота = √(10^2 - 6^2) = √(100 - 36) = √64 = 8(см)
ответ: 8 см - высота трапеции.