М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Evgenchee
Evgenchee
18.07.2021 04:06 •  Геометрия

Практическая работа на листах А4. 1. Начертите прямую. Отметьте на ней точку, не принадлежащую данной прямой. Постройте проекцию точки на данную прямую. Измерьте расстояние от точки до прямой.

2. Начертите прямую и отрезок PQ, не пересекающий данную прямую. Постройте проекцию этого отрезка на данную прямую. Измерьте расстояние от концов отрезка до прямой. Измерьте длину отрезка и его проекции. Сравните их. Проведите исследование, построив еще три отрезка и выполнив сравнение длин отрезков и их проекций.

Сформулируйте результат исследования.

3. Начертите прямую и отрезок MN, пересекающий данную прямую. Постройте проекцию отрезка на данную прямую. Измерьте расстояние от концов отрезка до прямой. Измерьте длину отрезка и его проекции., сравните их. Проведите исследование, выполнив задание еще для трех отрезков.

Сформулируйте результаты исследования.

4. Постройте две перпендикулярные прямые а и в. На прямой в отметьте отрезок АС и постройте его проекцию на прямую а. Сделайте выводы.

5. Постройте прямую и постройте отрезок так, чтобы его проекция состояла из одной точки; была равна самому отрезку.​

👇
Ответ:
Evlampy3
Evlampy3
18.07.2021

смотрите на фото. пишите, если возникнут вопросы

Объяснение:

чтобы найти расстояние от концов отрезка до прямой, опустим перепенликуляр.

...

на перпендикулярной прямой отрезок вырождается в точку

2 задача подпись "расстояние от концов отрезка до прямой"

далее (длина отрезка = длине проекции в данном случае)


Практическая работа на листах А4. 1. Начертите прямую. Отметьте на ней точку, не принадлежащую данно
4,7(5 оценок)
Открыть все ответы
Ответ:
AnastasiaP654
AnastasiaP654
18.07.2021

Дано координати точок А(7 8) В(3 5) С(-5 9)

Треба знайти

2.) Рівняння висоти трикутника АВС, опущеної з вершини А на сторону

ВС;  

Находим уравнение прямой ВС. Вектор ВС = (-5-3; 9-5) = (-8; 4).

Уравнение ВС: (x - 3)/(-8) = (y - 5)/4 или в общем виде x + 2y - 13 = 0.

В уравнении высоты АН из точки А на сторону ВС, представленной в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.

Получаем уравнение АН: -2x + y + С = 0.

Для определения слагаемого С подставим координаты точки А:

-2*7 + 1*8 + С = 0, отсюда С = 14 - 8 = 6.

Уравнение ВС: -2x + y + 6 = 0 или 2x - y - 6 = 0.

3.) Рівняння медіани трикутника АВС, опущеної з вершини В на сторону

АС;  Находим координаты точки М (основание медианы) как середину стороны АС: М = (А(7 8) + С(-5 9))/2 = (1; 8,5).

Вектор ВМ = (1-3; 8,5-5) = (-2; 3,5).

Уравнение ВМ: (x - 3)/(-2) = (y - 5)/3.5 или в целых единицах

(x - 3)/(-4) = (y - 5)/7. Оно же в общем виде 7x + 4y - 41 = 0.

4.) Рівняння прямої, яка проходить через точку С паралельно стороні ВС;   Это и есть прямая ВС.

5.) Величину кута між прямими АВ та АС;

Находим векторы АВ и АС.

Вектор х у Квадрат Длина

АВ = -4 -3 25 5

АС = -12 1 145 12,04159458

cos A = (-4*(-12) + (-3)*1)/(5*√145) = = 0,747409319  

A = 0,726642341 радиан

A = 41,63353934 градусов

6.) Відстань від точки С до прямої АВ.

Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:

d =   |A·Mx + B·My + C| / √(A² + B²).  

Вектор АВ = (-4; -3).

Уравнение АВ: (x - 7)/(-4) = (y - 8)/(-3) или в общем виде 3x - 4y + 11 = 0.

Подставим в формулу коэффициенты точки С и уравнения стороны АВ:

d =   |3·(-5) + (-4)·9 + 11| / √(3² + (-4)²)  =   |-15 - 36 + 11| / √(9 + 16)  =

=   40 /√25  = 8.

4,7(97 оценок)
Ответ:
Ven8Kedy
Ven8Kedy
18.07.2021
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам.
1. Пусть АМ = х, тогда СМ = 3 - х.
(3 - x) : x = 3 : 2
6 - 2x = 3x
5x = 6
x = 1,2
AM = 1,2 см, СМ = 1,8 см

2. Так как MN < NK, то MP < PK.
Пусть МР = х, тогда РК = х + 0,5
4 : x = 5 : (x + 0,5)
5x = 4x + 2
x = 2
МР =2 см, РК = 2,5 см

3. DE + EP = Pdep - DP = 21 - 7 = 14 см
Пусть DE = x, тогда ЕР = 14 - х
x : 3 = (14 - x) : 4
4x = 42 - 3x
7x = 42
x = 6
DE = 6 см, ЕР = 8 см

4. Пусть АВ = х, тогда ВС = х + 3.
x : 2 = (x + 3) : 3
3x = 2x + 6
x = 6
АВ = 6 см, ВС = 9 см

6. В условии опечатка: надо найти длины сторон CD и DE.
DF - диагональ ромба, а диагонали ромба лежат на биссектрисах его углов, значит DF - биссектриса треугольника.
CD + DE = Pcde - CE = 55 - 20 = 35 см
Пусть CD = х, тогда DE = 35 - х
x : 8 = (35 - x) : 12
12x = 280 - 8x
20x = 280
x = 14
CD = 14 см, DE = 21 см

7. ΔАВС, ∠С = 90°, АМ - биссектриса.
Пусть АС = х, тогда по теореме Пифагора АВ = √(х² + 81).
x : 4 = √(х² + 81) : 5
5x = 4√(х² + 81)
25x² = 16x² + 81 · 16
9x² = 81 · 16
x² = 9 · 16
x = 3 · 4 = 12
АС = 12 см
Sabc = AC · CB / 2 = 12 · 9 = 54 см²

8. Так как точка О равноудалена от катетов, СО - диагональ квадрата, а диагонали квадрата лежат на биссектрисах его углов. Значит СО - биссектриса треугольника.
а : 40 = b : 30
b = 30a / 40 = 3a/4
По теореме Пифагора:
70² = a² + 9a²/16
25a²/16 = 4900
a² = 4900 · 16 / 25 = 196 · 16
a = 14 · 4 = 56
CB = 56 см
АС = 3 · 56 / 4 = 3 · 14 = 42 см
Sabc = CB · AC / 2 = 56 · 42 / 2 = 1176 см²

9. ΔАВС: ∠В = 60°, ∠С = 40°, ⇒ ∠А = 80°.
О - точка пересечения биссектрис.
∠ОАС + ∠ОСА = (∠А + ∠С)/2 = (80° + 40°)/2 = 60°
Из ΔОАС ∠АОС = 180° - (∠ОАС + ∠ОСА) = 180° - 60° = 120°

10. ΔАВС с прямым углом С, СМ - биссектриса.
АС = АВ/2 = 2 см как катет, лежащий напротив угла в 30°.
По теореме Пифагора
ВС = √(АВ² - АС²) = √(16 - 4) = √12 = 2√3 см
Пусть АМ = х, тогда МВ = 4 - х.
x : 2 = (4 - x) : (2√3)
2√3x = 8 - 2x
2x(√3 + 1) = 8
x = 4 / (√3 + 1) = 4(√3 - 1) / (3 - 1) = 2(√3 - 1)
AM = 2(√3 - 1) см
МВ = 4 - (2√3 - 2) = 6 - 2√3 = 2√3(√3 - 1) см

11. ΔАВС: ∠С = 90°, ∠А = 60°, ⇒ ∠В = 30°, тогда
АВ = 2АС = 2√3 см по свойству катета, лежащего напротив угла в 30°.
По теореме Пифагора:
ВС = √(АВ² - АС²) = √(12 - 3) = √9 = 3 см
СМ - биссектриса.
Пусть АМ = х, МВ = 2√3 - х.
x : √3 = (2√3 - x) : 3
3x = 6 - √3x
x(3 + √3) = 6
x = 6 / (3 + √3) = 6(3 - √3) /(9 - 3) = 3 - √3 = √3(√3 - 1)
AM = √3(√3 - 1) см
МВ = 2√3 - 3 + √3 = 3√3 - 3 = 3(√3 - 1) см
4,5(56 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ