углы BОD и СОЕ равны
Объяснение:
Мы можем видеть, что у углов АОЕ и ВОF имеется общая часть, угол ВОЕ.
Так как из условия "Углы АОЕ и ВОF на рисунке 45 равны", и мы вычтем из углов их общую чать, то получим, что угол ЕОF равен углу ВОА.
А так как ОВ и OE — биссектрисы углов АОС и DOF, то можем сделать вывод, что угол DOЕ равен углу СОВ.
Углы BОD и СОЕ можно представить как сумму общей для углов части, угол DOС с соответствующими углами СОВ и DOЕ. И так как угол DOЕ равен углу СОВ, следует, что углы BОD и СОЕ равны.
Объяснение:<!--c-->
image
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
Кут трикутника, протилежний його середній за довжиною стороні і буде середнім за градусною мірою
Позначемо шуканий кут за х, тоді
За т. Косинусів
14*14=6*6+16*16-2*16*6*сosx
cosx=1/2
x=60°
Відповідь: 60 градусів-середній за мірою кут трикутника.