На стороне AB равностороннего треугольника ABC взята точка D так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту треугольника, проведенную из вершины C.
РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных расстояний m, другое – n. Расстояния – это высоты. Находим площади треугольников:
Сюда относится картинка с умножением
Теперь их суммируем:
Сюда с сложением
В левой части полная площадь ABC, правую можно периписать так:
Сюда с сложением и умножением
Где h - высота из вершины C, равна сумме расстояний = 16 см
Тебе дан равнобедренный треугольник, у равнобедренного треугольника 1 боковая сторона = второй, боковая сторона ас=12 см, значит св=12. Почему св= 12? Так как угол С 120 градусов, значит он больше 90 и его нужно указать вверху треугольника. Далее проводишь биссектрису CH. Чтобы найти биссектрису должен(а) записать соотношение AC/CH=CH/CB и выражаешь CH(так как записана 2 раза то у тебя получается квадрат биссектрисы). CH(в квадрате)=ас*св= 12*12=144 см(это бисстектр в квадрате) CH=12 см Так как CH биссектриса, то она делит угол на 2 равные части, то есть 120:2=60. Мы знаем, что биссектриса образовывает угол в 90 градусов, угол H= 90, найдем угол А. Сумма углов треугольника = 180, чтобы найти угол А надо из 180 вычесть 90 и 60= 30 градусам. Катет лежащий против угла в 30 градусов равен половине гипотенузы CH= 12:2 = 6 см
На стороне AB равностороннего треугольника ABC взята точка D так, что сумма расстояний от нее до сторон AC и BC равна 16 см. Найдите высоту треугольника, проведенную из вершины C.
РЕШЕНИЕ: Пусть сторона треугольника а. Одно из данных расстояний m, другое – n. Расстояния – это высоты. Находим площади треугольников:
Сюда относится картинка с умножением
Теперь их суммируем:
Сюда с сложением
В левой части полная площадь ABC, правую можно периписать так:
Сюда с сложением и умножением
Где h - высота из вершины C, равна сумме расстояний = 16 см
ОТВЕТ: 16 см