1. Е=120°, М=120°, К=60°, F=60°
2. P=60°, М=60°, N=120°, L=120°
(Надеюсь правильно)
Объяснение:
1.
Рассмотрим треугольники EFK и FMK,они равны по 3 признаку равенства треугольников.
Треугольник EFK равнобедренный,углы при основании равнобедренного треугольника равны=> угол k= углу f=30°. E= 180-(30*2)= 120°
В параллелограмме противоположные углы равны=> E=M=120°, K=F=60°
2.
Рассмотрим треугольники NPL и NML они равны по 3 признаку равенства треугольников. В равносторонеем треугольнике углы равны=> угол N= углу L= углу P= 180/3=60°
В параллелограмме противоположные углы равны=> угол P= углу М=60°, угол N= углу L=120°
Длина основания - 6см, длины боковых сторон - 14см. Доказательство от противного - строим произвольный равнобедренный треугольник ABC с равными сторонами AB и AC. Из вершины А строим высоту AH, которая будет являться так же медианой и биссектрисой. Отсюда получаем, что треугольник ABH=ACH; BH=CH=1/2BC. Предположим, что длина основания BC=14см, то BH=CH=7см, а AB=AC=6см. Найдём синус угла BAH
sin(BAH)=BH/AB=7/6>1
Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
Из подобия треугольников AOD и BOC следует, что АO/OС = AD/BC = b/a
7/2=(36-x)/x
7x=72-2x
9x=72
x=8
36-8=28
8 и28