Дано: обозначим точками:пусть диаметр АВ, хорда АС. Центр окружности О.
Найти: угол А.
Решение: дополнительное построение: проводим отрезок соединяющий центр окружности(О) и второй конец хорды(С). Получившийся треугольник АСО равностороний(т.к. все стороны равны радиусу), значит каждый угол равен 60°.
Угол GMB и угол GMN смежные, те их сумма равна 180гр, находим угол GMN = 180-уголGMB = 180-84=96гр
Сумма углов треугольника равна 180гр. К тому же угол MGN равен 1/2 угла МNG, тк это равнобедренный треугольник, а GM является биссектрисой. Таким образом мы можем записать, что 180=уголGMN+уголMNG+1/2углаMNG
Угол GMB и угол GMN смежные, те их сумма равна 180гр, находим угол GMN = 180-уголGMB = 180-84=96гр
Сумма углов треугольника равна 180гр. К тому же угол MGN равен 1/2 угла МNG, тк это равнобедренный треугольник, а GM является биссектрисой. Таким образом мы можем записать, что 180=уголGMN+уголMNG+1/2углаMNG
Дано: обозначим точками:пусть диаметр АВ, хорда АС. Центр окружности О.
Найти: угол А.
Решение: дополнительное построение: проводим отрезок соединяющий центр окружности(О) и второй конец хорды(С). Получившийся треугольник АСО равностороний(т.к. все стороны равны радиусу), значит каждый угол равен 60°.
Тогда и угол А равен 60°.
ответ: 60°.