Обозначил меньшее основание - а, большее основание - b. Тогда периметр трапеции, с учётом условия равенства меньшего основания и боковых сторон, можно записать так Р=3*а+b. Площадь трапеции выглядит так: S=1/2*(a+b)*h, подставим известные нам значения 128=1/2*(a+b)*8 или a+b=(128*2)/8; a+b=32. Выразим из последнего уравнения b и подставим его в уравнение периметра: b=32-a; P=3*a+32-a; получим 52=2*а+32; 2а=52-32; 2а=20; а=10 см. b=32-10=22 см. Получили, что боковые стороны и меньшее основание равны 10 см, а большее основание равно 22 см.
6) Дано:
KMLF-параллелограмм
KM=2KF
Р=36
KM=FL(т.к KMFL-параллелограмм)
FK=ML(т.к KMFL-параллелограмм)
P=KM+ML+LF+FK=KM+KM/2+KM+KM/2=3KM
3KM=36
KM=12
FL=KM=12
FK=ML=KM/2=6
ответ: FL=12, KM=12, FK=6, ML=6.
7) Дано:
PRNM-параллелограмм
уголМ+уголR=140°
уголМ=уголR=70°(т.к у параллелограмма противоположные углы равны)
уголМ+уголP=180°(по свойству параллелограмма)
уголP=180°-70°=110°
уголP=уголN=110°(как противоположные углы параллелограмма)
ответ: уголМ=70°, уголR=70°, уголP=110°, уголN=110°.
8) Дано:
KRNM-прямоугольник
уголМ=90°
Т.к противоположные стороны попарно параллельны, и соседние стороны, пересекающиеся в одной вершине перпендикулярны, следовательно все углы=90°
ответ: уголМ=90°, уголK=90°, уголR=90°, уголN=90°.