1. А 2.г понел ну хорошо тогда
Трапеция АВСД, ВС=14, АД=40, радиус вписанной=25, возможны 2 варианта
1. центр окружности О внутри трапеции, проводим радиусы ОА=ОВ=ОС=ОД=25, треугольник ВОС равнобедренный, проводим высоту ОН на ВС, ОН=медиане=биссектрисе, ВН=НС=1/2ВС=14/2=7, треугольник ВОН прямоугольный, ОН=корень(ОВ в квадрате-ВН в квадрате)=корень(625-49)=24, треугольник АОД равнобедренный, проводим высоту=медиане=биссектрисе на АД, АК=КД=1/2АД=40/2=20, треугольник АОК прямоугольный, ОК=корень(ОА в квадрате-АК в квадрате)=корень(625-400)=15, НК-высота трапеции=ОН+ОК=24+15=39,
2 вариант центр вне трапеции (АД выше О), тогда все тоже самое, только НК -высота=ОН-ОК=24-15=9
Дано: равносторонний треугольник АВС, R = 20 см
Найти: P - ?
1. Радиус описанной окружности вокруг равностороннего треугольника равен двум радиусам вписанной в него окружности => r = 20:2 = 10 см.
2. Если сложить два радиуса, получим высоту, медиану и биссектрису треугольника одновременно, так как он равносторонний => этот отрезок равен 10 + 20 = 30.
Рассмотрим прямоугольный треугольник, который отсёк этот отрезок (прямоуг. т. к. высота). Одна из сторон будет равна Х, другая - 2Х (т.к. Х - половина стороны р/ст треугольника, которую отсекла медиана, являющаяся высотой)
По теореме Пифагора находим Х:
4х² - х² = 900
3х² = 900
х² = 300
х = 10√3 и х = -10√3, но этот корень не подходит по усл., а значит он посторонний.
3. 10√3 - половина стороны, значит вся сторона = 20√3
Р = 3 * 20√3 = 60√3
ответ: 60√3
агде вопрос...
Объяснение: