1) ∠А=35°, ∠В=90°, ∠С=55°
2)Нет
1) Если описать окружность вокруг ΔАВС, то центр такой окружности будет в точке D. Это прямоугольный треугольник ∠В=90°.
Рассмотрим ΔВDС. Он равнобедренный DВ=DС, значит
∠DВС=∠DСВ, а ∠АDВ- внешний угол ΔВDС
∠АDВ=∠DВС+∠DСВ=2∠DВС
∠DВС=∠АDВ:2=110°:2=55°.
∠С=55°. По теореме о сумме острых углов прямоугольного треугольника ∠А=90°-55°=35°
2)Нет
По теореме о сумме сторон треугольника : сумма длин двух любых сторон треугольника больше длины третьей стороны этого треугольника
22+27 >49
49>49 - не выполняется
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
Якщо многокутники мають рівні площі, але вони не рівні, тоді їх називають рівновеликими.
Объяснение: