Что бы векторы были коллинеарны, достаточно, что бы координаты одного вектора получались умножением координат второго на одно и то же число, то есть, к примеру, вектор а=m*b
Пусть это число m. Тогда
для координат у имеем 1*m= 2 и отсюда сразу m=2
Теперь составим два уравнения для координат х и z
для координат х
имеем 2*m = n², то есть 2*2 = n², а отсюда n=2 или n=-2
Для координат z
имеем n*m = -4, то есть 2n = -4, отсюда n= -2
Значит n=2 не годится, и остается n = -2
проверим, для чего координаты вектора а должны получаться при умножении координат вектора b на m, то есть на 2. При этом n=-2 :
1) Проведем другую диагональ АС. Точку пересечения диагоналей обозначим О. ΔАСD - равнобедренный АD= СD=2,9 см. DО - биссектрисса. ΔАОD=ΔСОD (по двум сторонам м углу между ними), значит АО=ОС. ΔАВО=ΔСВО , значит АВ=ВС=2,7 см. Периметр равен 2(2,7+2,9)=2·5,6=11,2 см. 2) Обозначим длину сторон: х; х-8: х+8; 3(х-8). По условию: х+х-8+х+8+3(х-8)=66, 6х-24=66, 6х=90, х=15. Стороны четырехугольника равны: 15 см, 23 см, 7 см, 21 см. 3) Проведем диагональ ВD. ΔАВD имеет углы 30° и 85° Значит ∠АВD =180-85-30=65°. ∠АВС=∠АВD+∠СВD=65°+65°=130°. Проведем другую диагональ АС. ΔАВС по условию равнобедренный: АВ=ВС. Значит углы при основании равны (180-130):2=25°. ∠САD=85-25=60°. Диагонали перпендикулярные, дают возможность вычислить углы прямоугольных треугольников, на которые диагоналями поделен четырехугольник АВСD. Углы четырехугольника: 95°, 50°, 130°, 85°.
ответ: Коллинеарны.
Объяснение:
Что бы векторы были коллинеарны, достаточно, что бы координаты одного вектора получались умножением координат второго на одно и то же число, то есть, к примеру, вектор а=m*b
Пусть это число m. Тогда
для координат у имеем 1*m= 2 и отсюда сразу m=2
Теперь составим два уравнения для координат х и z
для координат х
имеем 2*m = n², то есть 2*2 = n², а отсюда n=2 или n=-2
Для координат z
имеем n*m = -4, то есть 2n = -4, отсюда n= -2
Значит n=2 не годится, и остается n = -2
проверим, для чего координаты вектора а должны получаться при умножении координат вектора b на m, то есть на 2. При этом n=-2 :
2*2= (-2)² - верно
1*2=2 - верно
-2*2= -4 - верно.
Векторы коллинеарны.