Пусть данный параллелограмм будет АВСД. Сделаем соразмерно условию рисунок и рассмотрим его. ВН высота, ⊥ АД и⊥ ВС, ВМ - высота и ⊥АВ и ⊥ прямой СД. ⇒ Угол АВМ - прямой, угол АВН=90-60º, ⇒ угол ВАН=30º ВН противолежит углу 30º, на этом основании рана половине АВ=4 см Площадь параллелограмма равна произведению его высоты на сторону, к которой она проведена. S АВСД=4*12=48 см² Так как противоположные углы параллелограмма равны, точно так же высота к ВД ( она пересекает продолжение СД) равна 12:2=6 см, Ясно, что произведение высоты ВМ и стороны СД = 6*8=48 см²
ответ: 52,3м; 104,6м
Объяснение:
Сам монумент, расстояние от точки А до основания монумента и расстояние от точки А до самой высокой точки образуют прямоугольный треугольник.
Высота монумента является катетом, расстояние от основания до точки А вторым катетом, а расстояние от точки А до вершины монумента гипотенузой.
Для того чтобы найти расстояние от точки А до вершины, нужно выстоу монумента разделить на sin60° и получим:
91/0,87=104,6м
Для нахождения расстояния от основания монумета до точки А, нужно расстояние от точки А до самой высокой точки умножить на cos60°: 104,6*0,5=52,3м