Центр вписанной в треугольник окружности лежит в точке пересечении биссектрис этого треугольника. Значит ВМ - это биссектриса угла В (<МВА=<МВС=<В/2=<А). Получается, что <В=2<А.
Т.к. <В+<А=90°, то <А=30°, а <В=60°.
ΔАМВ - равнобедренный (АМ=ВМ=8√3), т.к. углы при основании равны.
Из прямоугольного ΔМВС
МС=ВМ/2=8√3/2=4√3 (катет против угла 30° равен половине гипотенузы)
ВС=√(ВМ²-МС²)=√(192-48)=√144=12
Из прямоугольного ΔАВС
ВС=АВ/2 (катет против угла 30° равен половине гипотенузы)
АВ=2ВС=2*12=24
Объяснение:
отрезок - прямая, ограниченная с двух сторон (имеет начало и конец)
угол - фигура, образованная двумя лучами, исходящими из одной точки
треугольник - выпуклая фигура, образованная тремя отрезками, соединяющие три точки, не лежащие на одной прямой
перпендикуляр - луч, который образует с другим лучом угол в 90 градусов
медиана - луч, который делит отрезок на два равных друг другу отрезка
высота - перпендикуляр из определенного угла
окружность - геометрическое место точек, удаленных от одной точки (центра окружности) на равное растояние
св-ва равнобедренного треугольника - углы при основании равны, медиана является так же биссектрисой и высотой
признаки параллельных прямых - если две прямые перпендикулярны одной и той же прямой, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны
признаки равенства треугольников - по двум сторонам и углу между ними, по трем сторонам, по стороне и двум прилежащим углам
свойства прямоугольного треугольника - сумма острых углов равна 90 градусов, медиана к гипотенузе равна ее половине, катет против угла в 30 градусов равен половине гипотенузы, гипотенуза больше обоих катетов и меньше их суммы