сделать что-то простое :)
Чтобы найти высоту, надо сначала найти площадь. А чтобы найти площадь, надо найти размеры сторон - и диагоналей тоже.
Ромб делится диагоналями на четыре равных прямоугольных треугольника. У каждого из них катеты - это половинки диагоналей, а гипотенуза равна боковой стороне. Боковая сторона задана - это 200/4 = 50.
Далее речь идет об этом прямоугольном треугольнике.
Поскольку катеты отностятся как 3:4, то это "египетский" треугольник, то есть треугольник, подобный треугольнику со стронами 3,4,5. Поскольку гипотенуза равна 50, катеты равны 30 и 40.
Технически это можно проделать и "тупым" и не одним :) - можно например так.
Пусть один катет 3*х тогда другой 4*х, тогда
3^2*x^2 + 4^2*x^2 = 50^2;
x^2 = 100; x = 10; катеты 30 и 40.
Площадь такого треугольника 30*40/2 = 600;
Площадь всего ромба в 4 раза больше, то есть 2400;
Площадь равна высоте, умноженной на боковую сторону, то есть высота равна
2400/50 = 48.
Такой вот неприятный случай, простое и очевидное замечание вызвало, мягко говоря, сильное непонимание. Придется кое что объяснить.
Если очень трудно сосчитать площадь АВС (обозначения на рисунке sana2008), как АС*ВО/2 = 60*40/2 = 1200, или на тот случай, когда трудно сосчитать площадь ромба как АС*BD/2 = 2400, то
в этом случае, конечно, надо применить формулу Герона, она очень кстати.
Применяем её для треугольника АВС. АВ =ВС = 50, АС = 60, p = (50+50+60)/2 = 80;
р - ВС = р - АВ = 30
р - АС = 20
S^2 = 80*30*30*20 = (1200)^2
S = 1200
Ну и конечно - графически. Только вот сколько не строй "египетский" треугольник с гипотенузой 50, у него высота все равно 24. А это как раз расстояние от центра ромба до стороны, высота ромба в 2 раза больше.
Ошибка у sana2008 тривиальная, она почему то использовала АС = 30 и получила неверный результат, хотя отлично знала что АС = 60. Это бывает... но зачем же упрямиться :
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.