Призма - правильная четырехугольная. В основании - квадрат. Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы. Длина этой гипотенузы дана в условии - 4 см Пусть х - катеты этого треугольника 4=х√2 х=4:√2=4√2:(√2*√2)=2√2 Диагональ основания квадрата =2√2 Высота призмы =2√2 Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью. Радиус этой окружности равен половине стороны квадрата - основания призмы. Найдем эту сторону из формулы диагонали квадрата: d=а√2 Мы нашли d=2√2, значит сторона квадрата а=2 r= 2:2=1 Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения r =1 Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра. S =2πr*h= 2π*2√2 см²=4π√2 см²
11) 19+53=72 части всего в двух углах парал-ма 180:72 = 2,5 градуса в 1 части 19*2,5=47,5 градусов в меньшем угле 53*2,5=132,5 градуса в большем угле парал-ма
7) 62:2=31 - полупериметр ( сумма двух смежных сторон парал-ма) 31-9 = 22 - две меньшие стороны 22:2 = 11 меньшая сторона парал-ма 11+9=20 - большая сторона пара-ма
8) 3+7=10 частей в двух сторонах парал-ма 20:2 = 10 полупериметр 10:10 = 1 ед в одной части 3*1 = 3 меньшая сторона 7*1=7 большая сторона
В основании - квадрат.
Диагональ наклонена к плоскости основания под углом 45°. Значит, диагональ квадрата-основания и высота призмы - катеты равнобедренного прямоугольного треугольника с гипотенузой - диагональю призмы.
Длина этой гипотенузы дана в условии - 4 см
Пусть х - катеты этого треугольника
4=х√2
х=4:√2=4√2:(√2*√2)=2√2
Диагональ основания квадрата =2√2
Высота призмы =2√2
Основание цилиндра - круг, ограниченный вписанной в квадрат окружностью.
Радиус этой окружности равен половине стороны квадрата - основания призмы.
Найдем эту сторону из формулы диагонали квадрата:
d=а√2
Мы нашли d=2√2, значит сторона квадрата а=2
r= 2:2=1
Имеем цилиндр, высота которого по условию равна высоте призмы и равна 2√2, радиус основания цилиндра, найденный в процессе решения
r =1
Площадь боковой поверхности цилинда равна произведению длины окружности основания и высоты цилиндра.
S =2πr*h= 2π*2√2 см²=4π√2 см²