М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
reventon1
reventon1
24.04.2022 21:23 •  Геометрия

решить задачу По формуле а/sin(альфа)=в/sin(бетта)=с/син(гамма)">

👇
Открыть все ответы
Ответ:
bosiy01
bosiy01
24.04.2022

1) S = 1/6

2) S = 1/2

3) S = 5/9

Объяснение:

Площадь треугольника можно вычислить по следующей формуле:

S = \frac{1}{2}a\cdot{b}\cdot\sin\gamma

1) Обозначим площадь закрашенного ∆-ка S1 (см. рис.1)

Очевидно, т.к. точки делят стороны "единичного" ∆ка на равные отрезки, а угол \gamma у единичного и у малого треугольника общий, то

a_1 = \frac{a}{2};\: b_1=\frac{b}{3};\: \angle\gamma - \small{общий}

и площадь S1 равна

S_1 = \frac{1}{2}a_1\cdot{b_1}\cdot\sin\gamma \\ S_1 = \frac{1}{2}\cdot \frac{ a}{2}\cdot \frac {b}{3}\cdot\sin\gamma = \frac{1}{12}a\cdot{b}\cdot\sin\gamma = \\ = \frac{1}{6} \cdot \bigg(\frac{1}{2}a\cdot{b}\cdot\sin\gamma \bigg) = \frac{1}{6} S

А т.к. S = 1 = \: S1 = \frac{1}{6}

2) Пусть площадь закрашенной фигуры (а это - треугольник, см. рис.) равна S1.

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (обозначим их площади S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Треугольники 2, 3, 4 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = S_4 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 + S_4 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}

Соответственно, искомая площадь составляет

S_1= 1- ( S_2+S_3+S_4) = 1 - \frac{1}{2} = \frac{1}{2} \\

3) Пусть площадь закрашенной фигуры (а это - шестиугольник, см. рис.) равна S1

Тогда площадь исходного единичного треугольника будет равна:

площадь S1, плюс общая площадь трех незакрашенных треугольников (пусть их площади будут S2, S3, S4); а с учетом того, что площадь единичного треугольника равна 1:

S =S_1+S_2+S_3 +S_4= 1 \: \: = \\ = S_1 =S - ( S_2{+}S_3{+}S_4)= 1- ( S_2{+}S_3{+}S_4)

Площади треугольников 2, 3 - образованы точно так же, как и треугольник в первой части задачи и соответственно их площади вычисляются точно так же:

S_2 = S_3 = \frac{1}{6} \cdot S = \frac{1}{6} \cdot1= \frac{1}{6} \: = \\ = S_2 + S_3 = \frac{1}{6} + \frac{1}{6} = \frac{1}{3}

Но площадь треугольника 4 меньше: у него две стороны втрое меньше чем у исходного единичного, потому его площадь равна:

S_4= \frac{1}{3} \cdot \frac{1}{3} \cdot S = \frac{1}{9} S = \frac{1}{9}\cdot1= \frac{1}{9} \\

Следовательно, общая площадь незакрашенных частей равна:

\\ S_2 + S_3+ S_4 = \frac{1}{6} +\frac{1}{6} + \frac{1}{9}= \\= \frac{1}{3}+ \frac{1}{9}\ = \frac{3 + 1}{9} = \frac{4}{9}

А искомая площадь закрашенной фигуры S1 составляет

S_1=S - ( S_2 + S_3 + S_4 ) = 1 - ( S_2 + S_3 + S_4 ) = \\ = 1 - \bigg( \frac{1}{3} + \frac{1}{9} \bigg) = 1 - \frac{4}{9} = \frac{5}{9}


Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
Площадь треугольника равна 1.Каждая его сторона отмеченными точками делится на равные части. Найдите
4,5(19 оценок)
Ответ:
urubkovaanna
urubkovaanna
24.04.2022

18 см

Объяснение:

Дано: ΔАВС - равнобедренный.

ВС = 10 см;

ВН = 8 см - высота

BM || BC

Найти: Р (ΔВМН)

Рассмотрим ΔАВС - равнобедренный.

В равнобедренном треугольнике высота , проведенная к основанию,  является медианой.

⇒ АН = АС

НМ || ВС (условие)

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

⇒ НМ - средняя линия.

⇒ АМ = МВ = 10 : 2 = 5 (см)

Средняя линия треугольника равна половине основания.

⇒ НМ = ВС : 2 = 10 : 2 = 5 (см)

Периметр равен сумме длин всех сторон.

Р (ΔВМН) = МВ + ВН + МН = 5 +8 +5 = 18 (см)


Очень очень очень нужно .
4,6(20 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ