;
от точки A
;
в обе возможные стороны
перпендикулярен вектору основания
, а значит его проекции накрест-пропорциональны с противоположным знаком:
, что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться:
(II) ;
пропорционален вектору
, поскольку для вектора
выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора
;
имеет длину
;
, т.к
;
, а стало быть
;
.
/// примечание:
;
/// примечание:
.
1. 65°, 65°, 50°.
2. 57,5°; 57,5°; 65°.
Объяснение:
Нам дан один из внешних углов равнобедренного треугольника. У равнобедренного треугольника углы при основании равны.
Значит возможны два варианта решения:
1. Если дан внешний угол при основании, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Тогда угол при вершине треугольника равен 180° - 2·65° = 50° (по сумме внутренних углов треугольника, равной 180°).
ответ: 65°, 65°, 50°.
2. Если дан внешний угол при вершине, то внутренний, смежный с ним, равен 180° - 115° = 65° (сумма смежных углов равна 180°).
Внешний угол треугольника равен сумме двух внутренних (в нашем случае равных), не смежных с ним углов. Следовательно, углы при основании такого треугольника равны 115°:2 = 57,5°.
ответ: 57,5°; 57,5°; 65°.