М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Alik2017
Alik2017
11.06.2020 15:23 •  Геометрия

В треугольнике ABC через точку пересечения медиан проведена прямая параллельная стороне AC и пересекающая стороны AB и BC в каком отношении эта прямая делит каждую из двух сторон треугольника

👇
Ответ:
Диана090980
Диана090980
11.06.2020

на вкладке ответ смотри


В треугольнике ABC через точку пересечения медиан проведена прямая параллельная стороне AC и пересек
4,6(33 оценок)
Ответ:
DashaZakh
DashaZakh
11.06.2020
Фото из инетета
НАПИСАЛА ПЕРВАЯ
В треугольнике ABC через точку пересечения медиан проведена прямая параллельная стороне AC и пересек
4,5(97 оценок)
Открыть все ответы
Ответ:
кукушка139
кукушка139
11.06.2020

Объяснение:

Все грани прямоугольного параллелепипеда - прямоугольники.

ΔА₁АС:   ∠A₁AC = 90°

              sinβ = AA₁ / A₁C,   ⇒   AA₁ = A₁C · sinβ,

              AA₁ = a · sinβ

              cosβ = AC / A₁C,   ⇒  AC = A₁C · cosβ,

              AC = a · cosβ.

Точка пересечения диагоналей прямоугольника является центром описанной окружности. Тогда для окружности, описанной около прямоугольника ABCD ∠АОВ - центральный, а ∠ACB - вписанный, опирающийся на ту же дугу, значит

∠АCB = 1/2 ∠AOB = α/2.

ΔABC:   ∠ABC = 90°

             sin∠ACB = AB / AC,  ⇒  AB = AC · sin∠ACB,

             AB = a · cosβ · sin(α/2),

             cos∠ACB = BC / AC,  ⇒  BC = AC · cos∠ACB,

             BC = a · cosβ · cos(α/2).

Sбок = Pосн · AA₁

Sбок = (AB + BC) · 2 · AA₁

Sбок = (a · cosβ · sin(α/2) + a · cosβ · cos(α/2)) · 2 · a · sinβ =

= a · cosβ(sin(α/2) + cos(α/2)) · 2 · a · sinβ =

= 2a²sinβ·cosβ(sin(α/2) + cos(α/2)) =

= a²sin2β (sin(α/2) + cos(α/2))

4,7(86 оценок)
Ответ:
alinaharitonovi
alinaharitonovi
11.06.2020

По свойству параллельных прямых и секущей сумма углов при одной стороне параллелограмма равна 180°. Следовательно, биссектрисы его соседних углов пересекаются под прямым углом. Поэтому четырехугольник, образованный четырьмя биссектрисами параллелограмма - прямоугольник.    Обозначим его вершины К, L, M и N.

Биссектрисы параллелограмма, являясь секущими,  отсекают от него равнобедренные треугольники  ( они делят углы пополам, и накрестлежащие углы тоже равны). Противоположные стороны параллелограмма равны =>

АВ=BQ=AT=CD=CR=DS=8   Тогда ВR=12-CR=4.  Аналогично  длина отрезков  QC,, DT,, AS равна 4.

Отрезки   QR и TS равны 12-2•4=4.  

По 1-му признаку равенства треугольников ∆ АВТ=∆ RCD и  ∆ ABQ=∆ СDS ⇒ их стороны и углы, заключённые между ними, равны.

В равнобедренном треугольнике биссектриса=высота=медиана. ⇒ BL=LT=RN=ND

Биссектрисы противоположных углов параллелограмма параллельны: ВТ║RD,  а BR║TD как лежащие на параллельных сторонах ABCD.

Из доказанного выше BL=RN. ⇒   BL=RN. ⇒

Четырехугольник BRNL – параллелограмм, ⇒LN=BR=4

LN - диагональ прямоугольника  KLMN. Диагонали прямоугольника равны.

КМ=LN=4

Объяснение:

4,8(33 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ