Длина основания - 6см, длины боковых сторон - 14см. Доказательство от противного - строим произвольный равнобедренный треугольник ABC с равными сторонами AB и AC. Из вершины А строим высоту AH, которая будет являться так же медианой и биссектрисой. Отсюда получаем, что треугольник ABH=ACH; BH=CH=1/2BC. Предположим, что длина основания BC=14см, то BH=CH=7см, а AB=AC=6см. Найдём синус угла BAH sin(BAH)=BH/AB=7/6>1 Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.
1) KMNB параллелограмм - верно, так как BN║KM по условию и MN║KB как основания трапеции.
2) KMNB ромб - неверно, так как MN ≠ KM по условию.
3) MNPB ромб - верно. MB║NP по условию, MN║BP как основания трапеции, значит MNPB - параллелограмм. Смежные стороны у него равны (MN = NP по условию), значит MNPB - ромб.
4) ∠KBM = ∠MBN - неверно, так как в параллелограмме, который не является ромбом, диагонали не лежат на биссектрисах углов.
5) ∠MBN = ∠NBP - верно так как в ромбе диагонали лежат на биссектрисах его углов.
sin(BAH)=BH/AB=7/6>1
Синус угла не может быть больше 1, значит такой треугольник невозможен. Значит основание BC=6см, а стороны AB=AC=14см. Для проверки можем найти синус того же угла при новых условиях, он будет равен sin(BAH)=3/14, это допустимое значение. Значит основание треугольника - 6см, а боковые стороны - 14см.