Ипоследняя на сегодня : площадь сечения куба плоскостью,проходящей через концы трех ребер ,выходящих из одной вершины,равна 18*корень 3.просят найти длину ребра куба
1. Рассмотрим параллелограмм ABCD. Диагональ AC разделяет его на два треугольника: ABC и ADC. Эти треугольники равны по стороне и двум прилежащим углам (AC-общая сторона, угол 1=углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечении секущей AC и CD, AD и BC соответственно). Поэтому AB=CD, AD= BC и угол B=углу D. Далее, пользуясь равенствами углов 1 и 2, 3 и 4, получаем угол A=углу 1+угол 3=угол 2+угол 4=углу C. 2. Пусть О-точка пересечения диагоналей AC и BD параллелограмма ABCD. Треугольники AOB и COD равны по стороне и двум прилежащим углам (AB=CD как противоположные стороны параллелограмма, угол 1= углу 2 и угол 3=углу 4 как накрест лежащие углы при пересечение параллельных прямых AB и CD секущими AC и BD соответсвенно). Поэтому AO=OC и OB=OD, что и требовалось доказать
Для этого надо составить уравнения сторон в виде у = кх + в. У параллельных прямых коэффициенты "к" равны. Сторона АВ: Уравнение прямой: Будем искать уравнение в виде y = k · x + b . В этом уравнении: k - угловой коэффициент прямой (k = tg(φ), φ - угол, который образует данная прямая с положительным направлением оси OX); b - y-координата точки (0; b), в которой искомая прямая пересекает ось OY. k = (yB - yA) / (xB - xA) = (2 - (-6)) / (4 - (2)) = 4; b = yB - k · xB = 2 - (4) · (4) = yA - k · xA = -6 - (4) · (2) = -14 . Искомое уравнение: y = 4 · x - 14 .
Сторона ВС: k = (yB - yA) / (xB - xA) = (5 - (2)) / (-2 - (4)) = -0.5; b = yB - k · xB = 5 - (-0.5) · (-2) = yA - k · xA = 2 - (-0.5) · (4) = 4 . Искомое уравнение: y = -0.5 · x + 4 .
Сторона СД: k = (yB - yA) / (xB - xA) = (1 - (5)) / (-3 - (-2)) = 4; b = yB - k · xB = 1 - (4) · (-3) = yA - k · xA = 5 - (4) · (-2) = 13 . Искомое уравнение: y = 4 · x + 13 .
Сторона АД: k = (yB - yA) / (xB - xA) = (1 - (-6)) / (-3 - (2)) = -1.4; b = yB - k · xB = 1 - (-1.4) · (-3) = yA - k · xA = -6 - (-1.4) · (2) = -3.2 . Искомое уравнение: y = -1.4 · x - 3.2 .
Уравнения сторон АВ и СД имеют одинаковые коэффициенты "к", поэтому заданный четырёхугольник - трапеция.
сечением будет являться равносторонний треугольник
значит можно найти сторону этого трейгольника или диагональ грани куба
она равна 6
находим ребро : оно равно 3 корня из 2