решить. Если можно с условием. Пусть катет прямоугольного треугольника равен 14 см, противолежащий ему угол равен 600. Найдите его гипотенузу и второй острый угол.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
Вот ответ ко второй задаче : Углы 1 и 2 равны, т к АК биссектриса, углы 1 и 3 равны как накрест лежащие между параллельными прямыми ВС и AD и секущей АM . Значит углы 2 и 3 равны и треугольник АВM равнобедренный. AB = CD = 5 см. BC = BK + KC = 13 см, BC = AD = 13 см. P = 2 * (5+13) = 36 см. ответ : 36 см Вот ответ к четвертой : Если меньшая диагональ 12 см, а один из углов 60 градусов(меньший), то эта диагональ делит ромб на 2 равносторонних треугольника со стороной 12(а треугольники равносторонние,так как изначально они равнобедреные(у ромба все стороны равны)а угол 60 градусов,значит 2 других тоже по 60 градусов,а отсюда следует,что треугольники равносторонние со стороной 12 см)стороны ромба равны значит все стороны 12 см, а периметр равен сумме длин всех сторон:P=12*4=48см
ответ: P=48 см
вот ответ к первой задаче : так как сумма двух соседних углов ромба равна 180⁰. По условию задачи два угла ромба относятся как 8:10 ,значит, если один из углов 8х, то другой 10х сумма двух соседних углов ромба равна 180⁰.составим уравнение 8х + 10х = 180 18х = 180 х =10 коэффициент ТОГДА меньший угол равен: 8х = 8*10⁰ = 80⁰ ТОГДА больший угол 10х=10*10=100° град
Объяснение:
надеюсь, что тут допущена ошибка, и не 600, а 60.
в таком случае:
sin60=противолежащий катет/гипотенуза
√3/2=14/х, откуда х= 28√3/3.
так как треугольник-прямоугольный, значит сумма его острых углов равна 90, тогда второй угол равен 90-60=30