Т.к. грани одинаково наклонены к плоскости основания, то высота пирамиды опускается в центр вписанной в трапецию окружности. Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12 Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед² Радиус окружности, вписанной в равнобокую трапецию: r=, высота трапеции: h=2r==√8=2√2 Площадь трапеции: Sт=h(a+b)/2=6√2 Общая площадь: Sобщ=Sт+Sбок=30+6√2 ответ: a. 30+6
Вся совокупность неровностей земной коры (рельеф)Часть земной поверхности, высоко приподнятая над равниной и сильно расчлененная (горы)Обширные участки с ровной или холмистой поверхностью (равнины)Каменная оболочка Земли, которую образуют земная кора и верхняя часть мантии (литосфера)Равнина, имеющая высоту от 0-200 метров (низменности)Древний, относительно устойчивый участок земной коры, в основании которого лежит древний кристаллический фундамент, покрытый сверху осадочным чехлом (платформа)Равнина, имеющая абсолютную высоту от 500 метров и выше (плоскогорье)Подвижные неустойчивые участки земной коры (складчатость)Равнина, имеющая абсолютную высоту от 200-500 метров (возвышенность)Наука о движение литосферных плит (тектоника)
Свойство описанного четырёхугольника: суммы противолежащих сторон равны, значит сумма оснований трапеции равна сумме боковых сторон, следовательно периметр равен: Р=2(2+4)=12
Площадь боковой поверхности: Sбок=РН/2=12·5/2=30 ед²
Радиус окружности, вписанной в равнобокую трапецию: r=
Площадь трапеции: Sт=h(a+b)/2=6√2
Общая площадь: Sобщ=Sт+Sбок=30+6√2
ответ: a. 30+6