ответ: S біч = ( 24 + 12√2 ) см² .
Объяснение:
В паралелепіпеді ABCD - паралелограм ; ∠А = 45° ; АВ =2√2 см ;
AD = 4 cм ; AC₁ = 7 см ; S біч - ? S біч= P * H ;
P = 2( 2√2 + 4 ) см . У паралелограмі ABCD ∠В = 180° - ∠А = 180°- 45°=
= 135° . Із ΔАВС за Т . косинусів : АС = √[(2√2)²+ 4² -2√2* 4cos135°] =
= √ ( 8 + 16 + 16√2cos45°) = √ ( 24 + 16√2 * √2/2 ) = √ 40 = 2√10 ( см ) .
Із прямок . ΔАСС₁ за Т . Піфагора СС₁ = Н = √ (7² - ( 2√10 )² ) =
= √ (49 - 40 ) = √9 = 3 ( см ) .
S біч = ( 4√2 + 8 ) * 3 = ( 24 + 12√2 ) ( см² ) .
Точка M, равноудалена от вершин треугольника ABC, поэтому она лежит на перпендикуляре к (ABC), который восстановлен из центра (O) описанной около ΔABC окружности. Треугольник со сторонами 6, 8, 10 является египетским (10²=6²+8²), поэтому ∠B=90°, а значит центр описанной лежит на середине AC. И её радиус равен AC:2=10:2=5.
Как было сказано ранее MO⊥(ABC).
Рассмотри прямоугольный ΔAOM (∠O=90°): AO=5; AM=13. Найдём второй катет MO (расстояние от M до α) по теореме Пифагора (хотя тут опять Пифагорова тройка 5, 12, 13).
MO=√(13²-5²) = √((13+5)(13-5)) = √(18·8) = √(3²·4²) = 12
ответ: 12.