Углы у равнобедренной трапеции одинаковы по 45°.
Проведем из вершины трапеции две высоты на большее основание.
Расстояние между основаниями равно меньшему основанию трапеции, то есть 25 см.
Большее основание по условию 41 см.
41-25=16 см
16:2=8 см - Сторона прямоугольного треугольника, образованного при проведении высоты.
В этом треугольнике угол 45°. значит и второй угол прямоугольного треугольника 45°. (180°-90°-45°= 45°).
Так как углы при основаниях треугольника равны, то треугольник равнобедренный.
Высота совпадает с боковой стороной и равняется тоже 8 см.
ответ: высота трапеции 8 см
1)
Треугольник AOB - Равнобедреный (т.к.АО=ОB) =>
угол OBA=30 °
OA- Радиус
OA ⊥ac
угол BAC=90°-30°=60°
ОТВЕТ:60°
надеюсь правильно
2)
◡АС=60°;◡АВ=◡СВ=150°
* * *
Сделаем и рассмотрим рисунок. Отметим центр окружности О. ОА=ОС=R.
Основание треугольника АС равно радиусу окружности. АС=R ⇒
∆ АОС - равносторонний, все его углы равны 60°.
Дуга окружности, на которую опирается центральный угол, равна его градусной мере. ◡ АС = ∠ АОС=60°. Полная окружность содержит 360°. ⇒ ◡АВ+ ◡СВ=360°-60°=300°. Т.к. ∆ АВС равнобедренный. хорды АВ=СВ. Равные хорды стягивают равные дуги. ◡АВ=◡СВ=300°:2=150°
3)
LM=R, OL=OM=R =>
∆ LOM- равносторонний.
Диаметр, проведенный перпендикулярно хорде, делит ее пополам. AL=AM=12,4 =>LM=2•12,4=24,8 см
D (EK)=2R=49,6 см
P(LOM)=3•LM=74,4 см
4) ΔABC - прямоугольный; ∠C = 90°; ∠B = 30°; AB = 10
Катет AC лежит против угла 30° ⇒ равен половине гипотенузы AB:
AC = AB/2 = 10 /2 = 5
Проведена окружность с центром в точке А
а) радиус в точку касания образует с касательной угол 90°.
a) Радиус равен АС = 5
б) радиус меньше 5
в) радиус больше 5
Объяснение:
Задание 5 на картинке
180°-(56+72)=52°
Удачки))