russian.
тригонометрические функции острого угла в прямоугольном треугольнике. sin, cos, tg, ctg
итак, у каждого прямоугольного треугольника есть два острых угла. для каждого из них можно найти синус, косинус, тангенс и котангенс. здесь главное не перепутать, что к чему относится.
синус острого угла пр. треугольника - это отношение (деление) противолежащего этому углу катета к гипотенузе.
косинус острого угла пр. треугольника - это отношение (деление) прилегающего к этому углу катета к гипотенузе.
тангенс острого угла пр. треугольника - это отношение противолежащего этому углу катета к прилегающему катету.
котангенс - это наоборот, отношение прилегающего к этому углу катета к противолежащему.
во вложении есть рисунок, там все показано. легче это понять словами, а не на рисунке (лично для меня).
также существует таблица значений синуса, косинуса, тангенса и котангенса для некоторых углов (30°, 45°, 60°, 90°), тоже во вложении. таблицу нужно выучить обязательно.
ukrainian.
тригонометричні функції гострого кута прямокутного трикутника. sin, cos, tg, ctg.
у кожному прямокутному трикутнику є два гострих кута. для кожного з них можна знайти синус, косинус, тангенс та котангенс.
синус гострого кута пр. трикутника - це відношення (ділення) протилежного цьому куту катета до гіпотенузи.
косинус гострого кута пр. трикутника - це, відношення прилеглого цьому куту катета до гіпотенузи.
тангенс гострого кута пр. трикутника - це відношення протилежного цьому куту катета до прилеглого.
котангенс - це, навпаки, відношення прилеглого до цього кута катета до протилежного.
також існує таблиця значень синуса(sin), косинуса (cos), тангенса(tg) та котангенса (ctg) для деяких кутів (30°, 45°, 60°, 90°). таблицю потрібно вивчити.
таблицу можно легко выучить по принципу, данному на сайте
1) Находим длину AB, суммируя проекции сторон AC и BC:
A
B
=
15
+
27
=
42
2) Проводим высоту из точки C в точку H. Отрезок AH будет равен проекции стороны АС, т.е. 15. 3) Проводим перпендикуляр из середины AB в точку F. 4) Находим длину половины AB, путем деления пополам:
A
B
2
=
42
2
=
21
5) Находим расстояние от середины AB до точки H:
A
B
2
−
A
H
=
21
−
15
=
6
проекции находим AF:
A
F
=
45
⋅
6
27
=
10
7) Находим другую часть, FD, путем вычитания:
F
D
=
C
D
−
A
F
=
45
−
10
=
35
---ответ: на 10 и 35
Объяснение: