Радиус вписанной в треугольник окружности вычисляют по формуле:
r= √(р-а)(р-b)(р-с):р
Необходимо найти а, b, c DA1=DC1=А1С1, так как Δ DA1C1 образован диагоналями равных граней куба, и потому является равносторонним. Для нахождения радиуса окружности, вписанной в равносторонний треугольник, есть отдельная формула, которая вытекает из данной выше: r=а:2√3 В данной формуле а - диагональ грани данного куба. Каждая грань куба - квадрат. Диагональ квадрата d=a√2 Подставим значение диагонали в формулу радиуса r=(a√2):2√3 =4√2:2√3 =2√2:√3
АВСД - ромб. Через вершину А проведена прямая а параллельна диагонали ВД. Для доказательства используем одно из свойств ромба: его диагонали пересекаются под прямым углом. (Здесь даже не важно под каким углом они пересекаются). Поскольку прямая а и ВД параллельны, а СД пересекает одну из параллельных прямых, то она обязательно пересечет и вторую прямую, т.е. прямую а. Есть теорема: Пусть три прямые лежат в некоторой плоскости. Если прямая пересекает одну из параллельных прямых, то она пересекает и вторую прямую. Что и требовалось для доказательства.
Радиус вписанной в треугольник окружности вычисляют по формуле:
r= √(р-а)(р-b)(р-с):р
Необходимо найти а, b, c
DA1=DC1=А1С1, так как Δ DA1C1 образован диагоналями равных граней куба, и потому является равносторонним.
Для нахождения радиуса окружности, вписанной в равносторонний треугольник, есть отдельная формула, которая вытекает из данной выше:
r=а:2√3
В данной формуле а - диагональ грани данного куба.
Каждая грань куба - квадрат. Диагональ квадрата
d=a√2
Подставим значение диагонали в формулу радиуса
r=(a√2):2√3 =4√2:2√3 =2√2:√3
r= (2√2·√3):√3·√3=(2√3*√2):3=⅓·2√6 см
r=⅓·2√6 см